Get Math Help

GET TUTORING NEAR ME!

(800) 434-2582

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Home / Get Math Help

    Foci of Hyperbola

    Results

    {(-sqrt(a^2 + b^2), 0), (sqrt(a^2 + b^2), 0)}

    (-sqrt(a^2 + b^2) | 0
sqrt(a^2 + b^2) | 0)

    Example plots

    Example plots

    Equations

    x(t) = a sec(t)
y(t) = b tan(t)

    x^2/a^2 - y^2/b^2 = 1

    r(θ) = (a b)/sqrt(b^2 cos^2(θ) - a^2 sin^2(θ))

    (for a hyperbola with center at the origin, semimajor axis a parallel to the x-axis, and semiminor axis b parallel to the y-axis)

    Conic properties

    e = sqrt(b^2/a^2 + 1)

    p = b^2/sqrt(a^2 + b^2)

    L = b^2/a

    y = -(b x)/a ∨ y = (b x)/a

    x = -a^2/sqrt(a^2 + b^2) ∨ x = a^2/sqrt(a^2 + b^2)

    Characteristic polynomial

    λ sqrt(a^2 + b^2) + λ^2

    Eigenvalues

    λ_1 = -sqrt(a^2 + b^2)

    λ_2 = 0

    Eigenvectors

    v_1 = (-1, 1)

    v_2 = (0, 1)

    Diagonalization

    (-sqrt(a^2 + b^2) | 0
sqrt(a^2 + b^2) | 0) = S.J.S^(-1)
where
S = (0 | -1
1 | 1)
J = (0 | 0
0 | -sqrt(a^2 + b^2))
S^(-1) = (1 | 1
-1 | 0)

    Back to List | POWERED BY THE WOLFRAM LANGUAGE