Get Math Help

GET TUTORING NEAR ME!

(800) 434-2582

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Home / Get Math Help

    Quadrilateral Laminae

    Named laminae

    diamond | golden rectangle | golden rhombus | half rectangle | half square | isosceles trapezoid | kite | lozenge | monokite | parallelogram | quarter rectangle | quarter square | rectangle | regular diamond | rhombus | right trapezoid | square | trapezoid | inverted isosceles trapezoid (total: 19)

    Definitions

    Definitions Diamond

    Definitions Golden rectangle

    Definitions Golden rhombus

    Defining inequalities

    abs(x)/a + abs(y)/b<=1

    -a/2<=x<=a/2 and -(a Ï•)/2<=y<=(a Ï•)/2

    2 (1 + sqrt(5)) a + sqrt(2 (5 + sqrt(5))) (2 x + sqrt(5) y + y)>=0 and 2 (1 + sqrt(5)) a + sqrt(2 (5 + sqrt(5))) (-2 x + sqrt(5) y + y)>=0 and 2 sqrt(5 (5 + sqrt(5))) a>=5 sqrt(2) (2 x + sqrt(5) y + y) and 2 (1 + sqrt(5)) a>=sqrt(2 (5 + sqrt(5))) (-2 x + sqrt(5) y + y)

    -a/2<=x<=a/2 and 0<=y<=b/2

    -a/2<=x<=a/2 and 0<=y<=a/2

    0<=y<=h and a y + b h>=b y + 2 h x and a y + b h>=b y - 2 h x

    h (sqrt(a^2 - h^2) + x) + y sqrt(a^2 - h^2)>=0 and sqrt((b - h) (b + h)) (h + y)>=h x and h sqrt(b^2 - h^2)>=y sqrt(b^2 - h^2) + h x and h (sqrt(a^2 - h^2) + x)>=y sqrt(a^2 - h^2)

    y>=0 and a + y>=x and sqrt(2) a>=2 y and x>=y

    sqrt(3) y>=3 x and 2 sqrt(3) a>=x + sqrt(3) y and 2 sqrt(3) a + x>=sqrt(3) y and 3 x + sqrt(3) y>=0

    y>=0 and b sin(A) + y cos(A)>=x sin(A) and a sin(A)>=y and x sin(A)>=y cos(A)

    Lamina properties

    diamond | (-a, 0) | (0, -b) | (a, 0) | (0, b)
golden rectangle | (a/2, -(Ï• a)/2) | (a/2, (Ï• a)/2) | (-a/2, (Ï• a)/2) | (-a/2, -(Ï• a)/2)
golden rhombus | (-a/(2 sqrt(5/8 - sqrt(5)/8)), 0) | (0, -a/(2 sqrt(5/8 + sqrt(5)/8))) | (a/(2 sqrt(5/8 - sqrt(5)/8)), 0) | (0, a/(2 sqrt(5/8 + sqrt(5)/8)))
half rectangle | (-a/2, 0) | (a/2, 0) | (a/2, b/2) | (-a/2, b/2)
half square | (-a/2, 0) | (a/2, 0) | (a/2, a/2) | (-a/2, a/2)
isosceles trapezoid | (-b/2, 0) | (b/2, 0) | (a/2, h) | (-a/2, h)
kite | (-sqrt(a^2 - h^2), 0) | (0, -h) | (sqrt(b^2 - h^2), 0) | (0, h)
lozenge | (0, 0) | (a, 0) | ((1 + 1/sqrt(2)) a, a/sqrt(2)) | (a/sqrt(2), a/sqrt(2))
monokite | (0, 0) | ((sqrt(3) a)/2, (3 a)/2) | (0, 2 a) | (-(sqrt(3) a)/2, (3 a)/2)
parallelogram | (0, 0) | (b, 0) | (cos(A) a + b, sin(A) a) | (cos(A) a, sin(A) a)
quarter rectangle | (0, 0) | (a/2, 0) | (a/2, b/2) | (0, b/2)
quarter square | (0, 0) | (a/2, 0) | (a/2, a/2) | (0, a/2)
rectangle | (-a/2, -b/2) | (a/2, -b/2) | (a/2, b/2) | (-a/2, b/2)
regular diamond | (-a, 0) | (0, -a) | (a, 0) | (0, a)
rhombus | (-cos(θ) a, 0) | (0, -sin(θ) a) | (cos(θ) a, 0) | (0, sin(θ) a)
right trapezoid | (0, 0) | (a, 0) | (a, h_2) | (0, h_1)
square | (-a/2, -a/2) | (a/2, -a/2) | (a/2, a/2) | (-a/2, a/2)
trapezoid | (0, 0) | (b, 0) | ((a^2 - b^2 - c^2 + d^2)/(2 (a - b)), sqrt((a - b + c - d) (a - b - c + d) (a - b + c + d) (-a + b + c + d))/(2 (-a + b))) | (-(a^2 - 2 a b + b^2 + c^2 - d^2)/(2 (a - b)), sqrt((a - b + c - d) (a - b - c + d) (a - b + c + d) (-a + b + c + d))/(2 (-a + b)))
inverted isosceles trapezoid | (-b/2, 0) | (b/2, 0) | (a/2, sqrt(-1/4 (-a + b)^2 + c^2)) | (-a/2, sqrt(-1/4 (-a + b)^2 + c^2))

    diamond | 4
golden rectangle | 4
golden rhombus | 4
half rectangle | 4
half square | 4
isosceles trapezoid | 4
kite | 4
lozenge | 4
monokite | 4
parallelogram | 4
quarter rectangle | 4
quarter square | 4
rectangle | 4
regular diamond | 4
rhombus | 4
right trapezoid | 4
square | 4
trapezoid | 4
inverted isosceles trapezoid | 4

    diamond | a>0 and b>0
golden rectangle | a>0
golden rhombus | a>0
half rectangle | a>0 and b>0
half square | a>0
isosceles trapezoid | 0<a<b and h>0
kite | 0<h<a and 0<h<b
lozenge | a>0
monokite | a>0
parallelogram | a>0 and b>0 and 0<A<Ï€
quarter rectangle | a>0 and b>0
quarter square | a>0
rectangle | a>0 and b>0
regular diamond | a>0
rhombus | a>0 and 0<θ<π/2
right trapezoid | a>0 and h_1>0 and h_2>0
square | a>0
trapezoid | a>0 and b>0 and c>0 and d>0 and (a - b + c - d) (a - b - c + d) (a - b + c + d) (-a + b + c + d)>0
inverted isosceles trapezoid | 0<b<a and c>(a - b)/2

    diamond | 2 a | 2 b
golden rectangle | a sqrt(Ï•^2 + 1) | a sqrt(Ï•^2 + 1)
golden rhombus | a/sqrt(5/8 - sqrt(5)/8) | a/sqrt(5/8 + sqrt(5)/8)
isosceles trapezoid | 1/2 sqrt((a + b)^2 + 4 h^2) | 1/2 sqrt((a + b)^2 + 4 h^2)
kite | sqrt(a^2 - h^2) + sqrt(b^2 - h^2) | 2 h
lozenge | sqrt(2 + sqrt(2)) a | sqrt(2 - sqrt(2)) a
monokite | 2 a | sqrt(3) a
parallelogram | sqrt(a^2 - 2 a b cos(A) + b^2) | sqrt(a^2 + 2 a b cos(A) + b^2)
rectangle | sqrt(a^2 + b^2) | sqrt(a^2 + b^2)
regular diamond | 2 a | 2 a
rhombus | 2 a cos(θ) | 2 a sin(θ)
right trapezoid | sqrt(a^2 + h_1^2) | sqrt(a^2 + h_2^2)
square | sqrt(2) a | sqrt(2) a
trapezoid | sqrt((a^2 (-b) + a b^2 - a c^2 + b d^2)/(b - a)) | sqrt((a^2 (-b) + a b^2 - a d^2 + b c^2)/(b - a))
inverted isosceles trapezoid | sqrt(a b + c^2) | sqrt(a b + c^2)

    square | r = a/2

    square | h = 1/2 (sqrt(2) - 1) a

    golden rectangle | a Ï•
half rectangle | b/2
half square | a/2
isosceles trapezoid | h
monokite | 2 a
parallelogram | a sin(A)
quarter rectangle | b/2
quarter square | a/2
rectangle | b
square | a
trapezoid | sqrt((a - b + c - d) (a - b - c + d) (a - b + c + d) (-a + b + c + d))/(2 (b - a))
inverted isosceles trapezoid | sqrt(c^2 - 1/4 (b - a)^2)

    diamond | A = 2 a b
golden rectangle | A = a^2 Ï•
golden rhombus | A = (2 a^2)/sqrt(5)
half rectangle | A = (a b)/2
half square | A = a^2/2
isosceles trapezoid | A = 1/2 h (a + b)
kite | A = h (sqrt(a^2 - h^2) + sqrt(b^2 - h^2))
lozenge | A = a^2/sqrt(2)
monokite | A = sqrt(3) a^2
parallelogram | A = a b sin(A)
quarter rectangle | A = (a b)/4
quarter square | A = a^2/4
rectangle | A = a b
regular diamond | A = 2 a^2
rhombus | A = a^2 sin(2 θ)
right trapezoid | A = 1/2 a (h_1 + h_2)
square | A = a^2
trapezoid | A = ((a + b) sqrt((a - b + c - d) (a - b - c + d) (a - b + c + d) (-a + b + c + d)))/(4 (b - a))
inverted isosceles trapezoid | A = 1/4 (a + b) sqrt(4 c^2 - (b - a)^2)

    diamond | x^_ = (0, 0)
golden rectangle | x^_ = (0, 0)
golden rhombus | x^_ = (0, 0)
half rectangle | x^_ = (0, b/4)
half square | x^_ = (0, a/4)
isosceles trapezoid | x^_ = (0, ((2 a + b) h)/(3 (a + b)))
kite | x^_ = (1/3 (-sqrt(a^2 - h^2) + sqrt(b^2 - h^2)), 0)
lozenge | x^_ = (1/4 (2 + sqrt(2)) a, a/(2 sqrt(2)))
monokite | x^_ = (0, (7 a)/6)
parallelogram | x^_ = (1/2 (cos(A) a + b), 1/2 sin(A) a)
quarter rectangle | x^_ = (a/4, b/4)
quarter square | x^_ = (a/4, a/4)
rectangle | x^_ = (0, 0)
regular diamond | x^_ = (0, 0)
rhombus | x^_ = (0, 0)
right trapezoid | x^_ = ((a (h_1 + 2 h_2))/(3 (h_1 + h_2)), 1/3 (h_2 + h_1^2/(h_1 + h_2)))
square | x^_ = (0, 0)
trapezoid | x^_ = (b/2 + ((2 a + b) (c^2 - d^2))/(6 (-a^2 + b^2)), ((2 a + b) sqrt((a - b + c - d) (a - b - c + d) (a - b + c + d) (-a + b + c + d)))/(6 (-a^2 + b^2)))
inverted isosceles trapezoid | x^_ = (0, ((2 a + b) sqrt(-(-a + b)^2 + 4 c^2))/(6 (a + b)))

    Mechanical properties

    diamond | J_x invisible comma x = (a b^3)/3
golden rectangle | J_x invisible comma x = (a^4 Ï•^3)/12
golden rhombus | J_x invisible comma x = (a^4 Ï•)/(3 (Ï•^2 + 1)^2)
half rectangle | J_x invisible comma x = (a b^3)/24
half square | J_x invisible comma x = a^4/24
isosceles trapezoid | J_x invisible comma x = 1/12 h^3 (3 a + b)
kite | J_x invisible comma x = 1/6 h^3 (sqrt(a^2 - h^2) + sqrt(b^2 - h^2))
lozenge | J_x invisible comma x = a^4/(6 sqrt(2))
monokite | J_x invisible comma x = (37 a^4)/(8 sqrt(3))
parallelogram | J_x invisible comma x = 1/3 a^3 b sin^3(A)
quarter rectangle | J_x invisible comma x = (a b^3)/48
quarter square | J_x invisible comma x = a^4/48
rectangle | J_x invisible comma x = (a b^3)/12
regular diamond | J_x invisible comma x = a^4/3
rhombus | J_x invisible comma x = 1/3 a^4 sin^3(θ) cos(θ)
right trapezoid | J_x invisible comma x = 1/12 a (h_1 + h_2) (h_1^2 + h_2^2)
square | J_x invisible comma x = a^4/12
trapezoid | J_x invisible comma x = -((3 a + b) ((a - b + c - d) (a - b - c + d) (a - b + c + d) (-a + b + c + d))^(3/2))/(96 (a - b)^3)
inverted isosceles trapezoid | J_x invisible comma x = 1/96 (3 a + b) (4 c^2 - (b - a)^2)^(3/2)

    diamond | J_y invisible comma y = (a^3 b)/3
golden rectangle | J_y invisible comma y = (a^4 Ï•)/12
golden rhombus | J_y invisible comma y = (a^4 Ï•^3)/(3 (Ï•^2 + 1)^2)
half rectangle | J_y invisible comma y = (a^3 b)/24
half square | J_y invisible comma y = a^4/24
isosceles trapezoid | J_y invisible comma y = 1/48 h (a + b) (a^2 + b^2)
kite | J_y invisible comma y = 1/6 h ((a^2 - h^2)^(3/2) + (b^2 - h^2)^(3/2))
lozenge | J_y invisible comma y = 1/4 (1 + sqrt(2)) a^4
monokite | J_y invisible comma y = (sqrt(3) a^4)/8
parallelogram | J_y invisible comma y = 1/6 a b sin(A) (a^2 cos(2 A) + a^2 + 3 a b cos(A) + 2 b^2)
quarter rectangle | J_y invisible comma y = (a^3 b)/48
quarter square | J_y invisible comma y = a^4/48
rectangle | J_y invisible comma y = (a^3 b)/12
regular diamond | J_y invisible comma y = a^4/3
rhombus | J_y invisible comma y = 1/3 a^4 sin(θ) cos^3(θ)
right trapezoid | J_y invisible comma y = 1/12 a^3 (h_1 + 3 h_2)
square | J_y invisible comma y = a^4/12
trapezoid | J_y invisible comma y = -(sqrt((a - b + c - d) (a - b - c + d) (a - b + c + d) (-a + b + c + d)) (a^5 - a^4 b + 6 a^3 b^2 - 6 a^2 b^3 - 8 a^2 b c^2 + 8 a^2 b d^2 - 7 a b^4 + 4 a b^2 c^2 - 4 a b^2 d^2 + 3 a c^4 - 6 a c^2 d^2 + 3 a d^4 + 7 b^5 + 4 b^3 c^2 - 4 b^3 d^2 + b c^4 - 2 b c^2 d^2 + b d^4))/(96 (a - b)^3)
inverted isosceles trapezoid | J_y invisible comma y = 1/96 (a + b) (a^2 + b^2) sqrt(4 c^2 - (b - a)^2)

    diamond | J_zz = 1/3 a b (a^2 + b^2)
golden rectangle | J_zz = 1/12 a^4 Ï• (Ï•^2 + 1)
golden rhombus | J_zz = (a^4 Ï•)/(3 (Ï•^2 + 1))
half rectangle | J_zz = 1/24 a b (a^2 + b^2)
half square | J_zz = a^4/12
isosceles trapezoid | J_zz = 1/48 h ((a + b) (a^2 + b^2) + 4 h^2 (3 a + b))
kite | J_zz = 1/6 h (a^2 sqrt(a^2 - h^2) + b^2 sqrt(b^2 - h^2))
lozenge | J_zz = 1/12 (3 + 4 sqrt(2)) a^4
monokite | J_zz = (5 a^4)/sqrt(3)
parallelogram | J_zz = 1/6 a b sin(A) (2 (a^2 + b^2) + 3 a b cos(A))
quarter rectangle | J_zz = 1/48 a b (a^2 + b^2)
quarter square | J_zz = a^4/24
rectangle | J_zz = 1/12 a b (a^2 + b^2)
regular diamond | J_zz = (2 a^4)/3
rhombus | J_zz = 1/6 a^4 sin(2 θ)
right trapezoid | J_zz = 1/12 a (a^2 (h_1 + 3 h_2) + (h_1 + h_2) (h_1^2 + h_2^2))
square | J_zz = a^4/6
trapezoid | J_zz = (sqrt((a - b + c - d) (a - b - c + d) (a - b + c + d) (-a + b + c + d)) (a^4 - 4 a^3 b - 3 a^2 (c^2 + d^2) + a b (6 c^2 - 2 d^2) + b^2 (3 b^2 + 3 c^2 - d^2)))/(48 (a - b)^2)
inverted isosceles trapezoid | J_zz = 1/96 (a + b) (a^2 + b^2) sqrt(4 c^2 - (a - b)^2) + 1/96 (3 a + b) (4 c^2 - (a - b)^2)^(3/2)

    diamond | J_x invisible comma y = 0
golden rectangle | J_x invisible comma y = 0
golden rhombus | J_x invisible comma y = 0
half rectangle | J_x invisible comma y = 0
half square | J_x invisible comma y = 0
isosceles trapezoid | J_x invisible comma y = 0
kite | J_x invisible comma y = 0
lozenge | J_x invisible comma y = -1/24 (3 + 2 sqrt(2)) a^4
monokite | J_x invisible comma y = 0
parallelogram | J_x invisible comma y = -1/12 a^2 b sin^2(A) (4 a cos(A) + 3 b)
quarter rectangle | J_x invisible comma y = -1/64 a^2 b^2
quarter square | J_x invisible comma y = -a^4/64
rectangle | J_x invisible comma y = 0
regular diamond | J_x invisible comma y = 0
rhombus | J_x invisible comma y = 0
right trapezoid | J_x invisible comma y = -1/24 a^2 (h_1^2 + 2 h_2 h_1 + 3 h_2^2)
square | J_x invisible comma y = 0
trapezoid | J_x invisible comma y = ((a - b - c - d) (a - b + c - d) (a - b - c + d) (a - b + c + d) (2 b (2 a^2 + c^2) - (a + b) (2 b^2 + 3 c^2) + d^2 (3 a + b)))/(96 (a - b)^3)
inverted isosceles trapezoid | J_x invisible comma y = 0

    diamond | r_x = b/sqrt(6)
r_y = a/sqrt(6)
golden rectangle | r_x = 1/2 sqrt(1/6 (2 + sqrt(5))) a
r_y = a/(2 sqrt(3))
golden rhombus | r_x = a/sqrt(6 (Ï•^2 + 1))
r_y = a/sqrt(6 (1/Ï•^2 + 1))
half rectangle | r_x = b/(2 sqrt(3))
r_y = a/(2 sqrt(3))
half square | r_x = a/(2 sqrt(3))
r_y = a/(2 sqrt(3))
isosceles trapezoid | r_x = h sqrt((3 a + b)/(6 a + 6 b))
r_y = sqrt(a^2/24 + b^2/24)
lozenge | r_x = a/sqrt(6)
r_y = 1/2 sqrt(2 + sqrt(2)) a
monokite | r_x = 1/2 sqrt(37/6) a
r_y = a/(2 sqrt(2))
quarter rectangle | r_x = b/(2 sqrt(3))
r_y = a/(2 sqrt(3))
quarter square | r_x = a/(2 sqrt(3))
r_y = a/(2 sqrt(3))
rectangle | r_x = b/(2 sqrt(3))
r_y = a/(2 sqrt(3))
regular diamond | r_x = a/sqrt(6)
r_y = a/sqrt(6)
rhombus | r_x = (a sin(θ))/sqrt(6)
r_y = (a cos(θ))/sqrt(6)
right trapezoid | r_x = sqrt(h_1^2 + h_2^2)/sqrt(6)
r_y = (a sqrt((h_1 + 3 h_2)/(h_1 + h_2)))/sqrt(6)
square | r_x = a/(2 sqrt(3))
r_y = a/(2 sqrt(3))
inverted isosceles trapezoid | r_x = sqrt(-((3 a + b) ((b - a)^2 - 4 c^2))/(a + b))/(2 sqrt(6))
r_y = sqrt(a^2 + b^2)/(2 sqrt(6))

    golden rectangle | K = 1/3 a^4 ϕ (1 - (192 sum_(n=1)^∞ tanh(1/2 π (2 n - 1) ϕ)/(2 n - 1)^5)/(π^5 ϕ))
rectangle | K = 1/3 a^3 b (1 - (192 a sum_(n=1)^∞ tanh((π b (2 n - 1))/(2 a))/(2 n - 1)^5)/(π^5 b))
square | K = 1/3 a^4 (1 - (192 sum_(n=1)^∞ tanh(1/2 π (2 n - 1))/(2 n - 1)^5)/π^5)

    Distance properties

    diamond | sqrt(a^2 + b^2) | sqrt(a^2 + b^2) | sqrt(a^2 + b^2) | sqrt(a^2 + b^2)
golden rectangle | a Ï• | a | a Ï• | a
golden rhombus | a | a | a | a
half rectangle | a | b/2 | a | b/2
half square | a | a/2 | a | a/2
isosceles trapezoid | b | 1/2 sqrt((a - b)^2 + 4 h^2) | a | 1/2 sqrt((a - b)^2 + 4 h^2)
kite | a | b | b | a
lozenge | a | a | a | a
monokite | sqrt(3) a | a | a | sqrt(3) a
parallelogram | b | a | b | a
quarter rectangle | a/2 | b/2 | a/2 | b/2
quarter square | a/2 | a/2 | a/2 | a/2
rectangle | a | b | a | b
regular diamond | sqrt(2) a | sqrt(2) a | sqrt(2) a | sqrt(2) a
rhombus | a | a | a | a
right trapezoid | a | h_2 | sqrt(a^2 + (h_2 - h_1)^2) | h_1
square | a | a | a | a
trapezoid | b | d | a | c
inverted isosceles trapezoid | b | c | a | c

    diamond | p = 4 sqrt(a^2 + b^2)
golden rectangle | p = 2 a (Ï• + 1)
golden rhombus | p = 4 a
half rectangle | p = 2 a + b
half square | p = 3 a
isosceles trapezoid | p = sqrt((a - b)^2 + 4 h^2) + a + b
kite | p = 2 (a + b)
lozenge | p = 4 a
monokite | p = (2 + 2 sqrt(3)) a
parallelogram | p = 2 (a + b)
quarter rectangle | p = a + b
quarter square | p = 2 a
rectangle | p = 2 (a + b)
regular diamond | p = 4 sqrt(2) a
rhombus | p = 4 a
right trapezoid | p = sqrt(a^2 + (h_2 - h_1)^2) + a + h_1 + h_2
square | p = 4 a
trapezoid | p = a + b + c + d
inverted isosceles trapezoid | p = a + b + 2 c

    diamond | r = (a b)/sqrt(a^2 + b^2)
golden rhombus | r = a/sqrt(5)
kite | r = (h (sqrt(a^2 - h^2) + sqrt(b^2 - h^2)))/sqrt((sqrt(a^2 - h^2) + sqrt(b^2 - h^2))^2 + 4 h^2)
lozenge | r = a/(2 sqrt(2))
monokite | r = 1/2 (3 - sqrt(3)) a
quarter square | r = a/4
regular diamond | r = a/sqrt(2)
rhombus | r = a sin(θ) cos(θ)
square | r = a/2

    golden rectangle | R = 1/2 a sqrt(Ï•^2 + 1)
half rectangle | R = 1/4 sqrt(4 a^2 + b^2)
half square | R = (sqrt(5) a)/4
monokite | R = a
quarter rectangle | R = 1/4 sqrt(a^2 + b^2)
quarter square | R = a/(2 sqrt(2))
rectangle | R = 1/2 sqrt(a^2 + b^2)
square | R = a/sqrt(2)

    diamond | 2 max(a, b)
golden rectangle | a sqrt(Ï•^2 + 1)
golden rhombus | a/sqrt(5/8 - sqrt(5)/8)
half rectangle | (sqrt(5) a)/2
half square | (sqrt(5) a)/2
isosceles trapezoid | max(b, 1/2 sqrt((a + b)^2 + 4 h^2))
kite | max(a, b, 2 h, sqrt(a^2 - h^2) + sqrt(b^2 - h^2))
lozenge | sqrt(2 + sqrt(2)) a
monokite | 2 a
parallelogram | max(sqrt(a^2 - 2 a b cos(A) + b^2), sqrt(a^2 + 2 a b cos(A) + b^2))
quarter rectangle | 1/2 sqrt(a^2 + b^2)
quarter square | a/sqrt(2)
rectangle | sqrt(a^2 + b^2)
regular diamond | 2 a
rhombus | 2 a max(cos(θ), sin(θ))
right trapezoid | max(sqrt(a^2 + h_1^2), sqrt(a^2 + h_2^2))
square | sqrt(2) a
trapezoid | max(b, sqrt((a^2 b - a b^2 + a d^2 - b c^2)/(a - b)), sqrt((a^2 b - a b^2 + a c^2 - b d^2)/(a - b)))
inverted isosceles trapezoid | max(b, sqrt(a b + c^2))

    diamond | χ = 1
golden rectangle | χ = 1
golden rhombus | χ = 1
half rectangle | χ = 1
half square | χ = 1
isosceles trapezoid | χ = 1
kite | χ = 1
lozenge | χ = 1
monokite | χ = 1
parallelogram | χ = 1
quarter rectangle | χ = 1
quarter square | χ = 1
rectangle | χ = 1
regular diamond | χ = 1
rhombus | χ = 1
right trapezoid | χ = 1
square | χ = 1
trapezoid | χ = 1
inverted isosceles trapezoid | χ = 1

    monokite | s^_ = 1/6 a (4 + 3 log(3))
square | s^_ = 1/15 a (2 + sqrt(2) + 5 sinh^(-1)(1))

    square | A^_ = (11 a^2)/144

    Common classes

    convex laminae | polygonal laminae | quadrilateral laminae

    Back to List | POWERED BY THE WOLFRAM LANGUAGE