Get Math Help

GET TUTORING NEAR ME!

(800) 434-2582

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Home / Get Math Help

    Tangent Function

    Plots

    Plots

    Plots

    Alternate form assuming x is real

    sin(2 x)/(cos(2 x) + 1)

    Alternate forms

    sin(x)/cos(x)

    (i (e^(-i x) - e^(i x)))/(e^(-i x) + e^(i x))

    Roots

    x = π n, n element Z

    Integer root

    x = 0

    Properties as a real function

    {x element R : x/Ï€ + 1/2 not element Z}

    R (all real numbers)

    periodic in x with period π

    surjective onto R

    odd

    Series expansion at x = 0

    x + x^3/3 + (2 x^5)/15 + O(x^6)
(Taylor series)

    Derivative

    d/dx(tan(x)) = sec^2(x)

    Indefinite integral

    integral tan(x) dx = -log(cos(x)) + constant
(assuming a complex-valued logarithm)

    Identities

    tan(x) = tan(m π + x) for m element Z

    tan(x) = -cot(2 x) + csc(2 x)

    tan(x) = (1 - cos(2 x)) csc(2 x)

    tan(x) = sin(2 x)/(1 + cos(2 x))

    tan(x) = -(2 tan(x/2))/(-1 + tan^2(x/2))

    tan(x) = (2 tan(x/2))/(1 - tan^2(x/2))

    tan(x) = (x sqrt(-tan^2(x)))/sqrt(-x^2)

    tan(x) = (sec(x/3) sin(x))/(-1 + 2 cos((2 x)/3))

    Alternative representations

    tan(x) = 1/cot(x)

    tan(x) = cot(Ï€/2 - x)

    tan(x) = -cot(Ï€/2 + x)

    Series representations

    tan(x) = i + 2 i sum_(k=1)^∞ (-1)^k q^(2 k) for q = e^(i x)

    tan(x) = i sum_(k=-∞)^∞ (-1)^k e^(2 i k x) sgn(k)

    tan(x) = -i + 2 i sum_(k=0)^∞ (-1)^k e^(-2 i (1 + k) x) for Im(x)<0

    Integral representations

    tan(x) = integral_0^x sec^2(t) dt

    tan(x) = 2/π integral_0^∞ (-1 + t^((2 x)/π))/(-1 + t^2) dt for 0<Re(x)<π/2

    Back to List | POWERED BY THE WOLFRAM LANGUAGE