Get Math Help

GET TUTORING NEAR ME!

(800) 434-2582

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Home / Get Math Help

    Tangent Line Circle

    Results

    line | T^^(t) = (b/sqrt(a^2 + b^2), -a/sqrt(a^2 + b^2))
circle | T^^(t) = (-sin(t), cos(t))

    (b/sqrt(a^2 + b^2) | -a/sqrt(a^2 + b^2)
-sin(t) | cos(t))

    Example plots

    Example plots Line

    Example plots Circle

    Equations

    line | x(t) = b t
y(t) = a (-t) - c/b
circle | x(t) = a cos(t)
y(t) = a sin(t)

    line | a x + b y + c = 0
circle | x^2 + y^2 = a^2

    line | r(θ) = -c/(a cos(θ) + b sin(θ))
circle | r(θ) = a

    Characteristic polynomial

    -(b λ)/sqrt(a^2 + b^2) - (a sin(t))/sqrt(a^2 + b^2) + (b cos(t))/sqrt(a^2 + b^2) + λ^2 - λ cos(t)

    Eigenvalues

    λ_1 = (sqrt(a^2 + b^2) cos(t) - sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2) + b)/(2 sqrt(a^2 + b^2))

    λ_2 = (sqrt(a^2 + b^2) cos(t) + sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2) + b)/(2 sqrt(a^2 + b^2))

    Eigenvectors

    v_1 = (-(-sqrt(a^2 + b^2) cot(t) + b csc(t) - csc(t) sqrt((4 a sqrt(a^2 + b^2) - 2 b sqrt(a^2 + b^2) cot(t) + a^2 cos(t) cot(t) + b^2 cos(t) cot(t) + b^2 csc(t)) sin(t)))/(2 sqrt(a^2 + b^2)), 1)

    v_2 = (-(-sqrt(a^2 + b^2) cot(t) + b csc(t) + csc(t) sqrt((4 a sqrt(a^2 + b^2) - 2 b sqrt(a^2 + b^2) cot(t) + a^2 cos(t) cot(t) + b^2 cos(t) cot(t) + b^2 csc(t)) sin(t)))/(2 sqrt(a^2 + b^2)), 1)

    Diagonalization

    (b/sqrt(a^2 + b^2) | -a/sqrt(a^2 + b^2)
-sin(t) | cos(t)) = S.J.S^(-1)
where
S = ((sqrt(a^2 + b^2) cot(t) + csc(t) sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2) - b csc(t))/(2 sqrt(a^2 + b^2)) | cot(t)/2 - (csc(t) (sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2) + b))/(2 sqrt(a^2 + b^2))
1 | 1)
J = ((sqrt(a^2 + b^2) cos(t) - sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2) + b)/(2 sqrt(a^2 + b^2)) | 0
0 | (sqrt(a^2 + b^2) cos(t) + sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2) + b)/(2 sqrt(a^2 + b^2)))
S^(-1) = ((sqrt(a^2 + b^2) sin(t))/sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2) | (-sqrt(a^2 + b^2) cos(t) + sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2) + b)/(2 sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2))
-(sqrt(a^2 + b^2) sin(t))/sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2) | (sqrt(a^2 + b^2) cos(t) + sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2) - b)/(2 sqrt(4 a sqrt(a^2 + b^2) sin(t) + (a^2 + b^2) cos^2(t) - 2 b sqrt(a^2 + b^2) cos(t) + b^2)))

    Back to List | POWERED BY THE WOLFRAM LANGUAGE