(1, 8)-knight Graph
K^__8
vertex count | 8 edge count | 0 connected component count | 8
bicolorable | bipartite | class 1 | knight | Meyniel | perfect | simple | triangle-free | uniquely colorable | weakly perfect
8-complete graph
null graph
vertex degrees | 0 (8 vertices)
radius | ∞ diameter | ∞ girth | ∞ vertex connectivity | 0 edge connectivity | 0
x^8
1
1
chromatic number | 1 edge chromatic number | 0
0^8
(0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0)
Hosoya index | 1 Kirchhoff index | ∞ stability index | 1 Wiener index | ∞