(1, 9)-Jahangir Graph
W_10
vertex count | 10 edge count | 18 connected component count | 1
apex | asymmetric | biconnected | bridgeless | chromatically unique | class 1 | cone | connected | cyclic | determined by resistance | determined by spectrum | dominating unique | fully reconstructible in C^1 | graceful | Halin | Hamilton-connected | Hamiltonian | H-star connected | imperfect | Jahangir | linklessly embeddable | map | multigraphic | noncayley | nonempty | noneulerian | nongeometric | pancyclic | perfect matching | planar | polyhedral | projective planar | quadratically embeddable | rigid | self-dual | simple | switchable | traceable | uniquely embeddable | wheel
10-wheel complement graph
10-wheel graph
(not a named graph)
vertex degrees | 3 (9 vertices) | 9 (1 vertex)
radius | 1 diameter | 2 girth | 3 vertex connectivity | 3 edge connectivity | 3
(x + 1)^2 (x^2 - 2 x - 9) (x^3 - 3 x + 1)^2
x^9 y^9 + 18 x^9 y^8 + 153 x^9 y^7 + 807 x^9 y^6 + 2916 x^9 y^5 + 7506 x^9 y^4 + 13821 x^9 y^3 + 17667 x^9 y^2 + 14373 x^9 y + 5776 x^9 + 9 x^8 y^7 + ... + 9 x^4 y^3 + 162 x^4 y^2 + 1053 x^4 y + 2916 x^4 + 9 x^3 y^2 + 144 x^3 y + 807 x^3 + 9 x^2 y + 153 x^2 + 18 x + 1 (47 terms)
x^9 + 9 x^8 + 9 x^7 y + 36 x^7 + 9 x^6 y^2 + 63 x^6 y + 84 x^6 + 9 x^5 y^3 + 81 x^5 y^2 + 189 x^5 y + 126 x^5 + 9 x^4 y^4 + 90 x^4 y^3 + 270 x^4 y^2 + ... + 315 x y^4 + 315 x y^3 + 189 x y^2 + 64 x y + 8 x + y^9 + 9 y^8 + 36 y^7 + 84 y^6 + 126 y^5 + 126 y^4 + 84 y^3 + 36 y^2 + 8 y (46 terms)
chromatic number | 4 edge chromatic number | 9
(1 - sqrt(10))^1 (root of 1 - 3 x + x^3 near x = -1.87939)^2 (-1)^2 (root of 1 - 3 x + x^3 near x = 0.347296)^2 (root of 1 - 3 x + x^3 near x = 1.53209)^2 (1 + sqrt(10))^1
Hosoya index | 382 Kirchhoff index | 31.26 stability index | 220 Wiener index | 72