(2, 3)-bishop Graph
2P_3
vertex count | 6 edge count | 4 connected component count | 2
acyclic | apex | asymmetric | bicolorable | bipartite | bishop | block | bridged | chordal | chordless | chromatically nonunique | class 1 | claw-free | determined by resistance | determined by spectrum | disconnected | dominating nonunique | edge-transitive | flexible | forest | line graphs | linklessly embeddable | map | matchstick | Meyniel | multigraphic | noncayley | nonempty | noneulerian | nongeometric | nonhamiltonian | no perfect matching | outerplanar | perfect | planar | projective planar | pseudoforest | Ptolemaic | simple | square-free | strongly perfect | switchable | triangle-free | ungraceful | uniquely embeddable | unit-distance | untraceable | weakly perfect
6-graph 149
2-ladder rung graph
vertex degrees | 1 (4 vertices) | 2 (2 vertices)
radius | ∞ diameter | ∞ girth | ∞ vertex connectivity | 0 edge connectivity | 0
x^2 (x^2 - 2)^2
(x + 1)^4
x^4
chromatic number | 2 edge chromatic number | 2
(-sqrt(2))^2 0^2 sqrt(2)^2
(0 | 0 | 0 | 0 | 1 | 0 0 | 0 | 0 | 0 | 1 | 0 0 | 0 | 0 | 0 | 0 | 1 0 | 0 | 0 | 0 | 0 | 1 1 | 1 | 0 | 0 | 0 | 0 0 | 0 | 1 | 1 | 0 | 0)
(1 | 0 | 0 | 0 0 | 1 | 0 | 0 0 | 0 | 1 | 0 0 | 0 | 0 | 1 1 | 1 | 0 | 0 0 | 0 | 1 | 1)
Hosoya index | 9 Kirchhoff index | ∞ stability index | 9 Wiener index | ∞