(3, 3)-KP Graph
C_3 square P_3
vertex count | 9 edge count | 15 connected component count | 1
apex | asymmetric | biconnected | bridgeless | chromatically nonunique | class 1 | connected | cyclic | determined by resistance | determined by spectrum | dominating nonunique | fully reconstructible in C^1 | graceful | Hamilton-connected | Hamiltonian | H-star connected | KP | Laman | linklessly embeddable | map | multigraphic | noncayley | nonempty | noneulerian | nongeometric | no perfect matching | pancyclic | perfect | planar | polyhedral | projective planar | quadratically embeddable | rigid | simple | stacked prism | switchable | traceable | uniquely embeddable | unit-distance | weakly perfect | well covered
(not a named graph)
Johnson solid skeleton 14
(not a named graph)
vertex degrees | 3 (6 vertices) | 4 (3 vertices)
radius | 2 diameter | 3 girth | 3 vertex connectivity | 3 edge connectivity | 3
(x - 2) (x + 1)^2 (x^2 - 4 x + 2) (x^2 + 2 x - 1)^2
x^8 y^7 + 15 x^8 y^6 + 105 x^8 y^5 + 447 x^8 y^4 + 1260 x^8 y^3 + 2388 x^8 y^2 + 2874 x^8 y + 1728 x^8 + 8 x^7 y^5 + 105 x^7 y^4 + 603 x^7 y^3 + ... + 1077 x^5 y + 2727 x^5 + 15 x^4 y^2 + 276 x^4 y + 1323 x^4 + 42 x^3 y + 452 x^3 + 3 x^2 y + 105 x^2 + 15 x + 1 (33 terms)
x^8 + 7 x^7 + 3 x^6 y + 25 x^6 + 24 x^5 y + 57 x^5 + 15 x^4 y^2 + 81 x^4 y + 87 x^4 + 2 x^3 y^4 + 10 x^3 y^3 + 72 x^3 y^2 + 151 x^3 y + 89 x^3 + ... + 56 x^2 + 8 x y^5 + 47 x y^4 + 117 x y^3 + 152 x y^2 + 92 x y + 16 x + y^7 + 8 y^6 + 28 y^5 + 57 y^4 + 72 y^3 + 52 y^2 + 16 y (32 terms)
chromatic number | 3 edge chromatic number | 4
(-1 - sqrt(2))^2 (-1)^2 (-1 + sqrt(2))^2 (2 - sqrt(2))^1 2^1 (2 + sqrt(2))^1
(0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0)
(1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1)
Hosoya index | 228 Kirchhoff index | 25.5 stability index | 40 Wiener index | 63