(4, 1)-Cayley Tree
S_5
vertex count | 5 edge count | 4 connected component count | 1
acyclic | alkane | apex | asymmetric | bicolorable | bipartite | block | bridged | cactus | caterpillar | chordal | chordless | chromatically nonunique | class 1 | complete bipartite | complete k-partite | complete tree | conformally rigid | connected | determined by resistance | distance-hereditary | dominating unique | edge-transitive | flexible | forest | geodetic | graceful | integral | k-tree | linklessly embeddable | lobster | map | matchstick | median | Meyniel | noncayley | nonempty | noneulerian | nongeometric | nonhamiltonian | no perfect matching | not determined by spectrum | outerplanar | perfect | planar | projective planar | pseudoforest | pseudotree | Ptolemaic | quadratically embeddable | series-reduced | simple | spider | split | spoke | square-free | stacked book | star | strongly perfect | tree | triangle-free | unigraphic | uniquely colorable | uniquely embeddable | uniquely graceful | unit-distance | unswitchable | untraceable | weakly perfect
tetrahedron and singleton
tetrahedral graph
vertex degrees | 1 (4 vertices) | 4 (1 vertex)
radius | 1 diameter | 2 girth | ∞ vertex connectivity | 1 edge connectivity | 1
(x - 2) x^3 (x + 2)
(x + 1)^4
x^4
chromatic number | 2 edge chromatic number | 4
(-2)^1 0^3 2^1
(0 | 0 | 0 | 0 | 1 0 | 0 | 0 | 0 | 1 0 | 0 | 0 | 0 | 1 0 | 0 | 0 | 0 | 1 1 | 1 | 1 | 1 | 0)
(1 | 0 | 0 | 0 0 | 1 | 0 | 0 0 | 0 | 1 | 0 0 | 0 | 0 | 1 1 | 1 | 1 | 1)
Hosoya index | 5 Kirchhoff index | 16 stability index | 0 Wiener index | 16