(5, 1)-tadpole Graph
vertex count | 6 edge count | 6 connected component count | 1
almost Hamiltonian | apex | asymmetric | bridged | cactus | chordless | chromatically unique | class 1 | connected | cyclic | determined by resistance | determined by spectrum | dominating unique | flexible | geodetic | graceful | imperfect | linklessly embeddable | map | matchstick | multigraphic | noncayley | nonempty | noneulerian | nongeometric | nonhamiltonian | outerplanar | pan | perfect matching | planar | projective planar | pseudoforest | pseudotree | quadratically embeddable | simple | square-free | switchable | tadpole | traceable | triangle-free | unicyclic | uniquely embeddable | unit-distance
(6, 9, 1)-unit distance forbidden subgraph
7-matchstick graph 26
vertex degrees | 1 (1 vertex) | 2 (4 vertices) | 3 (1 vertex)
radius | 2 diameter | 3 girth | 5 vertex connectivity | 1 edge connectivity | 1
(x - 1) (x^2 + x - 1) (x^3 - 4 x - 1)
(x + 1) (x^4 y + 5 x^4 + 10 x^3 + 10 x^2 + 5 x + 1)
x (x^4 + x^3 + x^2 + x + y)
chromatic number | 3 edge chromatic number | 3
(root of -1 - 4 x + x^3 near x = -1.86081)^1 (1/2 (-1 - sqrt(5)))^1 (root of -1 - 4 x + x^3 near x = -0.254102)^1 (1/2 (-1 + sqrt(5)))^1 1^1 (root of -1 - 4 x + x^3 near x = 2.11491)^1
(0 | 1 | 0 | 0 | 1 | 0 1 | 0 | 1 | 0 | 0 | 0 0 | 1 | 0 | 1 | 0 | 0 0 | 0 | 1 | 0 | 1 | 0 1 | 0 | 0 | 1 | 0 | 1 0 | 0 | 0 | 0 | 1 | 0)
(1 | 1 | 0 | 0 | 0 | 0 1 | 0 | 1 | 0 | 0 | 0 0 | 0 | 1 | 1 | 0 | 0 0 | 0 | 0 | 1 | 1 | 0 0 | 1 | 0 | 0 | 1 | 1 0 | 0 | 0 | 0 | 0 | 1)
Hosoya index | 16 Kirchhoff index | 19 stability index | 16 Wiener index | 26