(9, 37)-self Dual Graph
W_9
vertex count | 9 edge count | 16 connected component count | 1
apex | asymmetric | biconnected | bridgeless | chromatically unique | class 1 | cone | connected | cyclic | determined by resistance | dominating unique | fully reconstructible in C^1 | graceful | Halin | Hamilton-connected | Hamiltonian | H-star connected | Jahangir | linklessly embeddable | map | Meyniel | multigraphic | noncayley | nonempty | noneulerian | nongeometric | no perfect matching | not determined by spectrum | pancyclic | perfect | planar | polyhedral | projective planar | quadratically embeddable | rigid | self-dual | simple | switchable | traceable | uniquely colorable | uniquely embeddable | weakly perfect | wheel
9-wheel complement graph
9-wheel graph
(not a named graph)
vertex degrees | 3 (8 vertices) | 8 (1 vertex)
radius | 1 diameter | 2 girth | 3 vertex connectivity | 3 edge connectivity | 3
(x - 4) x^2 (x + 2)^2 (x^2 - 2)^2
x^8 y^8 + 16 x^8 y^7 + 120 x^8 y^6 + 552 x^8 y^5 + 1708 x^8 y^4 + 3656 x^8 y^3 + 5324 x^8 y^2 + 4880 x^8 y + 2205 x^8 + 8 x^7 y^6 + 112 x^7 y^5 + ... + 8 x^4 y^3 + 124 x^4 y^2 + 704 x^4 y + 1708 x^4 + 8 x^3 y^2 + 112 x^3 y + 552 x^3 + 8 x^2 y + 120 x^2 + 16 x + 1 (38 terms)
x^8 + 8 x^7 + 8 x^6 y + 28 x^6 + 8 x^5 y^2 + 48 x^5 y + 56 x^5 + 8 x^4 y^3 + 60 x^4 y^2 + 120 x^4 y + 70 x^4 + 8 x^3 y^4 + 64 x^3 y^3 + 160 x^3 y^2 + ... + 48 x y^5 + 120 x y^4 + 160 x y^3 + 120 x y^2 + 49 x y + 7 x + y^8 + 8 y^7 + 28 y^6 + 56 y^5 + 70 y^4 + 56 y^3 + 28 y^2 + 7 y (37 terms)
chromatic number | 3 edge chromatic number | 8
(-2)^2 (-sqrt(2))^2 0^2 sqrt(2)^2 4^1
(0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0)
(1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1)
Hosoya index | 215 Kirchhoff index | 24.23 stability index | 144 Wiener index | 56