3-triangular Honeycomb Rook Graph
C_3 union P_2 union K_1
vertex count | 6 edge count | 4 connected component count | 3
apex | asymmetric | block | bridged | chordal | chordless | chromatically nonunique | class 2 | claw-free | cyclic | determined by resistance | determined by spectrum | disconnected | dominating nonunique | flexible | integral | line graphs | linklessly embeddable | map | matchstick | Meyniel | multigraphic | noncayley | nonempty | noneulerian | nongeometric | nonhamiltonian | no perfect matching | outerplanar | perfect | planar | projective planar | pseudoforest | Ptolemaic | simple | square-free | strongly perfect | switchable | triangular honeycomb rook | ungraceful | unicyclic | uniquely embeddable | unit-distance | untraceable | weakly perfect | well covered
(1, 2, 3)-complete tripartite graph
triangle and singleton
vertex degrees | 0 (1 vertex) | 1 (2 vertices) | 2 (3 vertices)
radius | ∞ diameter | ∞ girth | 3 vertex connectivity | 0 edge connectivity | 0
(x - 2) (x - 1) x (x + 1)^3
(x + 1) (x^2 y + 3 x^2 + 3 x + 1)
x (x^2 + x + y)
chromatic number | 3 edge chromatic number | 3
(-1)^3 0^1 1^1 2^1
(0 | 0 | 0 | 1 | 0 | 1 0 | 0 | 0 | 0 | 1 | 0 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 0 | 0 | 0 | 1 0 | 1 | 0 | 0 | 0 | 0 1 | 0 | 0 | 1 | 0 | 0)
(1 | 1 | 0 | 0 0 | 0 | 1 | 0 0 | 0 | 0 | 0 1 | 0 | 0 | 1 0 | 0 | 1 | 0 0 | 1 | 0 | 1)
Hosoya index | 8 Kirchhoff index | ∞ stability index | 8 Wiener index | ∞