7-graph 191
vertex count | 7 edge count | 7 connected component count | 1
almost controllable | antipodal | apex | asymmetric | bicolorable | bipartite | bridged | cactus | chordless | chromatically nonunique | class 1 | connected | cyclic | determined by resistance | determined by spectrum | distance-hereditary | dominating nonunique | flexible | graceful | linklessly embeddable | map | matchstick | median | Meyniel | multigraphic | noncayley | nonempty | noneulerian | nongeometric | nonhamiltonian | no perfect matching | outerplanar | perfect | planar | projective planar | pseudoforest | pseudotree | quadratically embeddable | simple | switchable | tadpole | traceable | triangle-free | unicyclic | uniquely colorable | uniquely embeddable | unit-distance | weakly perfect
7-graph 987
8-matchstick graph 77
vertex degrees | 1 (1 vertex) | 2 (5 vertices) | 3 (1 vertex)
radius | 3 diameter | 5 girth | 4 vertex connectivity | 1 edge connectivity | 1
x (x^2 - 2) (x^4 - 5 x^2 + 1)
(x + 1)^3 (x^3 y + 4 x^3 + 6 x^2 + 4 x + 1)
x^3 (x^3 + x^2 + x + y)
chromatic number | 2 edge chromatic number | 3
(-sqrt(5/2 + sqrt(21)/2))^1 (-sqrt(2))^1 (-sqrt(1/2 (5 - sqrt(21))))^1 0^1 sqrt(1/2 (5 - sqrt(21)))^1 sqrt(2)^1 sqrt(5/2 + sqrt(21)/2)^1
(0 | 1 | 0 | 1 | 0 | 0 | 0 1 | 0 | 1 | 0 | 0 | 0 | 0 0 | 1 | 0 | 1 | 0 | 0 | 0 1 | 0 | 1 | 0 | 1 | 0 | 0 0 | 0 | 0 | 1 | 0 | 1 | 0 0 | 0 | 0 | 0 | 1 | 0 | 1 0 | 0 | 0 | 0 | 0 | 1 | 0)
(1 | 1 | 0 | 0 | 0 | 0 | 0 1 | 0 | 1 | 0 | 0 | 0 | 0 0 | 0 | 1 | 1 | 0 | 0 | 0 0 | 1 | 0 | 1 | 1 | 0 | 0 0 | 0 | 0 | 0 | 1 | 1 | 0 0 | 0 | 0 | 0 | 0 | 1 | 1 0 | 0 | 0 | 0 | 0 | 0 | 1)
Hosoya index | 27 Kirchhoff index | 40.5 stability index | 0 Wiener index | 48