8-graph 88
3P_2 union 2K_1
vertex count | 8 edge count | 3 connected component count | 5
acyclic | apex | asymmetric | bicolorable | bipartite | block | bridged | chordal | chordless | chromatically nonunique | class 1 | claw-free | determined by resistance | determined by spectrum | disconnected | dominating nonunique | edge-transitive | fiveleaper | flexible | forest | integral | line graphs | linklessly embeddable | map | matchstick | Meyniel | noncayley | nonempty | noneulerian | nongeometric | nonhamiltonian | no perfect matching | outerplanar | perfect | planar | projective planar | pseudoforest | Ptolemaic | simple | square-free | strongly perfect | switchable | triangle-free | ungraceful | unigraphic | uniquely embeddable | unit-distance | untraceable | weakly perfect | well covered
(1, 1, 2, 2, 2)-complete 5-partite graph
3-empty graph
vertex degrees | 0 (2 vertices) | 1 (6 vertices)
radius | ∞ diameter | ∞ girth | ∞ vertex connectivity | 0 edge connectivity | 0
(x - 1)^3 x^2 (x + 1)^3
(x + 1)^3
x^3
chromatic number | 2 edge chromatic number | 1
(-1)^3 0^2 1^3
(0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0)
(1 | 0 | 0 0 | 1 | 0 0 | 0 | 1 0 | 0 | 0 0 | 0 | 0 1 | 0 | 0 0 | 1 | 0 0 | 0 | 1)
Hosoya index | 8 Kirchhoff index | ∞ stability index | 8 Wiener index | ∞