9-graph 1438
vertex count | 9 edge count | 9 connected component count | 1
apex | asymmetric | bicolorable | bipartite | bridged | cactus | caveman | chordless | chromatically nonunique | class 1 | connected | cyclic | determined by resistance | determined by spectrum | dominating nonunique | flexible | graceful | linklessly embeddable | map | matchstick | Meyniel | multigraphic | noncayley | nonempty | noneulerian | nongeometric | nonhamiltonian | no perfect matching | not uniquely embeddable | outerplanar | perfect | planar | projective planar | pseudoforest | pseudotree | quadratically embeddable | simple | square-free | switchable | triangle-free | unicyclic | uniquely colorable | unit-distance | untraceable | weakly perfect
(not a named graph)
2-Hanoi graph
vertex degrees | 1 (3 vertices) | 2 (3 vertices) | 3 (3 vertices)
radius | 3 diameter | 4 girth | 6 vertex connectivity | 1 edge connectivity | 1
x^3 (x^2 - 5) (x^2 - 2)^2
(x + 1)^3 (x^5 y + 6 x^5 + 15 x^4 + 20 x^3 + 15 x^2 + 6 x + 1)
x^3 (x^5 + x^4 + x^3 + x^2 + x + y)
chromatic number | 2 edge chromatic number | 3
(-sqrt(5))^1 (-sqrt(2))^2 0^3 sqrt(2)^2 sqrt(5)^1
(0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0)
(1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1)
Hosoya index | 52 Kirchhoff index | 63 stability index | 0 Wiener index | 84