GET TUTORING NEAR ME!

By providing your phone number, you consent to receive text messages from Club Z! for purposes related to our services. Message frequency may vary. Message and Data Rates may apply. Reply HELP for help or STOP to unsubscribe. See our Privacy Policy and our Terms and Conditions page

    Home / Get Math Help

    Nome

    Plot

    Alternate form

    e^(-(π K(1 - m))/K(m))

    Roots

    (no roots exist)

    Series expansion at m = 0

    m/16 + m^2/32 + (21 m^3)/1024 + (31 m^4)/2048 + (6257 m^5)/524288 + O(m^6) (Taylor series)

    Series expansion at m = ∞

    exp(-(π (log(m) + log(16)))/(-i log(m) + π - i log(16))) (1 + π^2/(2 (-i log(m) - i log(16) + π)^2 m) + (π^2 (-13 log^2(m) - 26 log(16) log(m) - 26 i π log(m) - 16 log(m) - 13 log^2(16) - 26 i π log(16) - 16 log(16) + 21 π^2 - 16 i π))/(64 (-i log(m) - i log(16) + π)^4 m^2) + O((1/m)^13))

    Derivative

    d/dm(q(m)) = -(π^2 q(m))/(4 (m - 1) m K(m)^2)

    Global maximum

    max{q(m)} = 1 at m = 1

    Limit

    lim_(m-> ± ∞) q(m) = -1

    Alternative representation

    q(m) = exp(-(π K(1 - m))/K(m))

    q(m) = exp((π (i WeierstrassHalfPeriods[{g_2, g_3}][[2]]))/(WeierstrassHalfPeriods[{g_2, g_3}][[1]])) for (m = {λ((WeierstrassHalfPeriods[{g_2, g_3}][[2]])/g_2), λ((WeierstrassHalfPeriods[{g_2, g_3}][[2]])/g_3)} and {{g_2, g_3}, WeierstrassHalfPeriods[{g_2, g_3}][[2]]} = WeierstrassHalfPeriods[{g_2, g_3}])

    Series representation

    q(m) = exp(-(2 sum_(k=0)^∞ (m^k ((1/2)_k)^2 (-ψ(1/2 + k) + ψ(1 + k)))/(k!)^2)/( sum_(k=0)^∞ (m^k ((1/2)_k)^2)/(k!)^2)) m

    q(m) = e^(π^2 w) sum_(k=0)^∞ ((-1 + A/B)^k π^(2 k) w^k)/(k!) for (A = sum_(k=0)^∞ ((1 - m)^k ((1/2)_k)^2)/(k!)^2 and B = sum_(k=0)^∞ ((1 - m)^k ((1/2)_k)^2 (1 + 2 w (log(4) + ψ(1/2 + k) - ψ(1 + k))))/(k!)^2 and w = 1/log((1 - m)/16))

    q(m) = q(m_0) sum_(k=0)^∞ ((m - m_0)^k sum_(p=0)^k (π^p sum_(j=0)^p (-1)^(j + p) binomial(p, j) (K(1 - m_0)/(K(m_0)))^j (u function (K(1 - u)/K(u))^(p - j))^(k) (m_0))/(p!))/(k!)