vertex count | 6 edge count | 11 connected component count | 1
almost Hamiltonian | apex | asymmetric | biplanar | bridged | chordal | chromatically unique | class 1 | claw-free | connected | cyclic | determined by resistance | determined by spectrum | geodetic | graceful | line graphs | lollipop | maximally nonhamiltonian | noncayley | nonempty | noneulerian | nonhamiltonian | nonplanar | perfect | perfect matching | projective planar | simple | singlecross | split | strongly perfect | toroidal | traceable | weakly perfect
(1, 4)-bipartite graph and singleton
(not a named graph)
vertex degrees | 1 (1 vertex) | 4 (4 vertices) | 5 (1 vertex)
radius | 1 diameter | 2 girth | 3 vertex connectivity | 1 edge connectivity | 1
(x + 1)^3 (x^3 - 3 x^2 - 5 x + 3)
(x + 1) (x^4 y^6 + 10 x^4 y^5 + 45 x^4 y^4 + 120 x^4 y^3 + 205 x^4 y^2 + 222 x^4 y + 125 x^4 + 5 x^3 y^3 + 30 x^3 y^2 + 85 x^3 y + 110 x^3 + 10 x^2 y + 45 x^2 + 10 x + 1)
x (x^4 + 6 x^3 + 10 x^2 y + 11 x^2 + 5 x y^3 + 15 x y^2 + 20 x y + 6 x + y^6 + 4 y^5 + 10 y^4 + 15 y^3 + 15 y^2 + 6 y)
chromatic number | 5 edge chromatic number | 5
(root of 3 - 5 x - 3 x^2 + x^3 near x = -1.53407)^1 (-1)^3 (root of 3 - 5 x - 3 x^2 + x^3 near x = 0.482696)^1 (root of 3 - 5 x - 3 x^2 + x^3 near x = 4.05137)^1
(0 | 1 | 1 | 1 | 1 | 0 1 | 0 | 1 | 1 | 1 | 0 1 | 1 | 0 | 1 | 1 | 0 1 | 1 | 1 | 0 | 1 | 0 1 | 1 | 1 | 1 | 0 | 1 0 | 0 | 0 | 0 | 1 | 0)
(1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1)
Hosoya index | 36 Kirchhoff index | 10.6 stability index | 24 Wiener index | 19