vertex count | 7 edge count | 12 connected component count | 1
apex | asymmetric | biplanar | bridged | chordal | chromatically nonunique | class 1 | claw-free | connected | cyclic | determined by resistance | determined by spectrum | geodetic | graceful | line graphs | lollipop | noncayley | nonempty | noneulerian | nonhamiltonian | nonplanar | no perfect matching | perfect | projective planar | simple | singlecross | toroidal | traceable | weakly perfect | well covered
7-graph 54
(not a named graph)
vertex degrees | 1 (1 vertex) | 2 (1 vertex) | 4 (4 vertices) | 5 (1 vertex)
radius | 2 diameter | 3 girth | 3 vertex connectivity | 1 edge connectivity | 1
-(x + 1)^3 (x^4 - 3 x^3 - 6 x^2 + 6 x + 4)
(x + 1)^2 (x^4 y^6 + 10 x^4 y^5 + 45 x^4 y^4 + 120 x^4 y^3 + 205 x^4 y^2 + 222 x^4 y + 125 x^4 + 5 x^3 y^3 + 30 x^3 y^2 + 85 x^3 y + 110 x^3 + 10 x^2 y + 45 x^2 + 10 x + 1)
x^2 (x^4 + 6 x^3 + 10 x^2 y + 11 x^2 + 5 x y^3 + 15 x y^2 + 20 x y + 6 x + y^6 + 4 y^5 + 10 y^4 + 15 y^3 + 15 y^2 + 6 y)
chromatic number | 5 edge chromatic number | 5
(root of 4 + 6 x - 6 x^2 - 3 x^3 + x^4 near x = -1.72259)^1 (-1)^3 (root of 4 + 6 x - 6 x^2 - 3 x^3 + x^4 near x = -0.493243)^1 (root of 4 + 6 x - 6 x^2 - 3 x^3 + x^4 near x = 1.16104)^1 (root of 4 + 6 x - 6 x^2 - 3 x^3 + x^4 near x = 4.0548)^1
(0 | 1 | 1 | 1 | 1 | 0 | 0 1 | 0 | 1 | 1 | 1 | 0 | 0 1 | 1 | 0 | 1 | 1 | 0 | 0 1 | 1 | 1 | 0 | 1 | 0 | 0 1 | 1 | 1 | 1 | 0 | 1 | 0 0 | 0 | 0 | 0 | 1 | 0 | 1 0 | 0 | 0 | 0 | 0 | 1 | 0)
(1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1)
Hosoya index | 62 Kirchhoff index | 23.2 stability index | 48 Wiener index | 34