The nth order Bernstein expansion of a function f(x) in terms of a variable x is given by B_n(f, x) = sum_(j = 0)^n(n j) x^j (1 - x)^(n - j) f(j/n), (Gzyl and Palacios 1997, Mathé 1999), where (n k) is a binomial coefficient and B_(j, n)(x) congruent (n j) x^j (1 - x)^(n - j) is a Bernstein polynomial.