Let C_(L, M) be a Padé approximant. Then C_((L + 1)/M) S_((L - 1)/M) - C_(L/(M + 1)) S_(L/(M + 1)) | = | C_(L/M) S_(L/M) C_(L/(M + 1)) S_((L + 1)/M) - C_((L + 1)/M) S_(L/(M + 1)) | = | C_((L + 1)/(M + 1)) x S_(L/M) C_((L + 1)/M) S_(L/M) - C_(L/M) S_((L + 1)/M) | = | C_((L + 1)/(M + 1)) x S_(L/(M - 1)) C_(L/(M + 1)) S_(L/M) - C_(L/M) S_(L/(M + 1)) | = | C_((L + 1)/(M + 1)) x S_((L - 1)/M), where S_(L/M) = G(x) P_L(x) + H(x) Q_M(x) and C is the C-determinant.