A Polish space is a completely metrizable topological vector space X = (X, τ) which is separable relative to τ. In particular, a topological space X is Polish if and only if it is homeomorphic to a complete metric space M = (M, d) where M has a countable subset which is dense relative to d.
Baire space | compactly generated space | complete space | Lusin space | metrizable space | pseudo-complete space | pseudo-metrizable space | quasi-complete space | Radon space | separable space | sequentially complete space | Suslin space
A^1(D, dλ^2) | A^2(D, dλ^2) | ℬ(D, dλ^2) | a^1(D, dλ^2) | a^2(D, dλ^2) | ℬ^h(D, dλ^2) | h^2 | ℬ_0^h(D, dλ^2) | H^2 | L^0(D, dλ^2) | L^2(D, dλ^2) | ℬ_0(D, dλ^2) | c_0(Z^+, dη) | ℓ^0(Z^+, dη) | ℓ^2(Z^+, dη)
Alfred Tarski | Kazimierz Kuratowski | Wacław Sierpiński
François Trèves. Topological Vector Spaces, Distributions and Kernels. p. 549, 1967.