For left bracketing bar q right bracketing bar <1, the Rogers-Ramanujan identities are given by, sum_(n = 0)^∞ q^(n^2)/(q)_n | = | 1/( product_(n = 1)^∞(1 - q^(5n - 4))(1 - q^(5n - 1))) | = | 1 + q + q^2 + q^3 + 2q^4 + 2q^5 + 3q^6 + ... (OEIS A003114), and sum_(n = 0)^∞ q^(n(n + 1))/(q)_n | = | 1/( product_(n = 1)^∞(1 - q^(5n - 3))(1 - q^(5n - 2))) | = | 1 + q^2 + q^3 + q^4 + q^5 + 2q^6 + ... (OEIS A003106), where (q)_n is a q-Pochhammer symbol.
Andrews-Gordon identity | Andrews-Schur identity | Bailey mod 9 identities | Dougall-Ramanujan identity | Dyson mod 27 identities | Göllnitz-Gordon identities | Gordon's partition theorem | Jackson-Slater identity | Rogers mod 14 identities | Rogers-Ramanujan continued fraction | Rogers-Selberg identities | Schur's partition theorem