h_n = (C_R^2)^n h_0 | d_t = (h_0 (1 + C_R^2) (1 - (C_R^2)^n))/(1 - C_R^2) d_b = (2 h_0 (1 - (C_R^2)^n))/(1 - C_R^2) - h_0 | | h_n | n^th bounce height h_0 | drop height n | bounces C_R | restitution coefficient d_t | total distance covered at the top of bounce n d_b | total distance covered at the start of bounce n
drop height | 2 meters bounces | 2 restitution coefficient | 0.5
n^th bounce height | 12.5 cm (centimeters) = 4.921 inches = 0.4101 feet total distance covered at the start of bounce n | 3 meters = 9.843 feet = 9' 10.11" total distance covered at the top of bounce n | 3.125 meters = 10.25 feet = 10' 3.031"
total distance covered after infinite bounces | 3.333 meters = 10.94 feet = 333.3 cm (centimeters)
C_R = | sqrt(h_1/h_0) h_1 = | C_R^2 h_0 h_2 = | C_R^2 h_1 = C_R^4 h_0 ... | h_n = | (C_R^2)^n h_0
d_b = | h_0 + sum_(m=1)^(n - 1) 2 h_m = | sum_(m=0)^(n - 1) 2 h_m - h_0 = | sum_(m=0)^(n - 1) 2 (C_R^2)^m h_0 - h_0 = | (2 h_0 (1 - (C_R^2)^n))/(1 - C_R^2) - h_0 d_t = | h_0 + sum_(m=1)^(n - 1) 2 h_m + h_n = | sum_(m=0)^(n - 1) 2 h_m - h_0 + h_n = | sum_(m=0)^(n - 1) 2 (C_R^2)^m h_0 - h_0 + h_n = | (2 h_0 (1 - (C_R^2)^n))/(1 - C_R^2) - h_0 + (C_R^2)^n h_0 = | h_0 ×((2 (1 - (C_R^2)^n))/(1 - C_R^2) - 1 + (C_R^2)^n) = | h_0/(1 - C_R^2) ×(2 (1 - (C_R^2)^n) - (1 - C_R^2) + (1 - C_R^2) (C_R^2)^n) = | h_0/(1 - C_R^2) ×(1 - (C_R^2)^n + C_R^2 - C_R^2 (C_R^2)^n) = | (h_0 (1 + C_R^2) (1 - (C_R^2)^n))/(1 - C_R^2)