V = 1/3 π a^2 h (for a circular right cone with center at the origin, height h, radius a)
x^2 + y^2<=(a^2 (h - z)^2)/h^2 and 0<=z<=h
(0, 0, h)
1
h
s = sqrt(a^2 + h^2)
S = π a (sqrt(a^2 + h^2) + a)
x^_ = (0, 0, h/4)
I = (1/20 (3 a^2 + 2 h^2) | 0 | 0 0 | 1/20 (3 a^2 + 2 h^2) | 0 0 | 0 | (3 a^2)/10)
max(2 a, sqrt(a^2 + h^2))
χ = 1