x(u, v) = v y(u, v) = a cos(u) z(u, v) = a sin(u)
y^2 + z^2 = a^2 and z<=h - a and 0<=x<=L
2
S = 2 a L cos^(-1)((a - h)/a)
ds^2 = 1 du^2 + a^2 dv^2
dA = a du dv
x^_ = piecewise | {L/2, 0, (2 (h (2 a - h))^(3/2))/(3 (a - h) sqrt(h (2 a - h)) - 3 a^2 csc^(-1)(a/sqrt(h (2 a - h))))} | h<=a {L/2, 0, (2 (h (2 a - h))^(3/2))/(3 a^2 (cot^(-1)((a - h)/sqrt(h (2 a - h))) - 2 sec^(-1)(a/sqrt(h (2 a - h)))) + 3 (a - h) sqrt(h (2 a - h)))} | h>a
V = L (a^2 cos^(-1)((a - h)/a) - (a - h) sqrt(2 a h - h^2))
K(u, v) = 0
(for a segment of a finite right cylinder of radius a with symmetry axis along the x-axis, bases at x = 0 and x = L, and cut parallel to the xy-plane at a height h above the bottom of the cylinder)
E(u, v) = 1 F(u, v) = 0 G(u, v) = a^2
e(u, v) = 0 f(u, v) = 0 g(u, v) = a
left double bracketing bar x(u, v) right double bracketing bar = sqrt(a^2 + v^2)
N^^(u, v) = (0, -cos(u), -sin(u))
algebraic surfaces | constant (Gaussian) curvature surfaces | quadratic surfaces | ruled surfaces | semialgebraic surfaces