x(u, v) = a cos(u) sin(v) y(u, v) = a sin(u) sin(v) z(u, v) = a cos(v)
(-a^2 + x^2 + y^2 + z^2)^2 = 0
4
S = 4 π a^2
ds^2 = a^2 sin^2(v) du^2 + a^2 dv^2
dA = a^2 sin(v) du dv
x^_ = (0, 0, 0)
V = (4 π a^3)/3
I = ((2 a^2)/5 | 0 | 0 0 | (2 a^2)/5 | 0 0 | 0 | (2 a^2)/5)
K(u, v) = 1/a^2
(for a double sphere centered at at the origin and of radius a)
g_(uu) = a^2 cos^2(v) g_(vv) = a^2
Γ | u | | | uv = cot(v) Γ | u | | | vu = cot(v) Γ | v | | | uu = sin(v) (-cos(v))
E(u, v) = a^2 sin^2(v) F(u, v) = 0 G(u, v) = a^2
e(u, v) = a^2 sin^2(v) f(u, v) = 0 g(u, v) = a^2
left double bracketing bar x(u, v) right double bracketing bar = a
N^^(u, v) = (cos(u) sin(v), sin(u) sin(v), cos(v))
algebraic surfaces | closed surfaces | constant (Gaussian) curvature surfaces | minimal surfaces | quartic surfaces | surfaces of revolution