x(t) = a cos(t) y(t) = b sin(t)
x^2/a^2 + y^2/b^2 = 1
r(θ) = (a b)/sqrt((b^2 - a^2) cos^2(θ) + a^2)
(for an ellipse with center at the origin, semimajor axis a parallel to the x-axis, and semiminor axis b parallel to the y-axis)
algebraic | closed | conic | convex | oval | parametric | quadratic | simple
A = π a b
s = 4 a E(1 - b^2/a^2)
d = 2
{(-sqrt(a^2 - b^2), 0), (sqrt(a^2 - b^2), 0)}
L = b^2/a
p = b^2/sqrt(a^2 - b^2)
e = sqrt(1 - b^2/a^2)
piecewise | {x = -a^2/sqrt(a^2 - b^2) ∨ x = a^2/sqrt(a^2 - b^2)} | ba | (otherwise)
evolute | ellipse evolute involute | ellipse involute