S = 2 π a h (lateral surface area assuming height h, radius a)
x(u, v) = a cos(u) y(u, v) = a sin(u) z(u, v) = v
x^2 + y^2 = a^2 and 0<=z<=h
2
ds^2 = 1 du^2 + a^2 dv^2
dA = a du dv
x^_ = (0, 0, h/2)
V = π a^2 h
I = (1/12 (3 a^2 + 4 h^2) | 0 | 0 0 | 1/12 (3 a^2 + 4 h^2) | 0 0 | 0 | a^2/2)
K(u, v) = 0
(for a finite open right cylinder of radius a with symmetry axis along the z-axis, base at z = 0, and of height h)