(drawn with base lengths 5, 2 and height 2)
y>=0 and y<=sqrt(c^2 - 1/4 (b - a)^2) and x sqrt(c^2 - 1/4 (b - a)^2)>=1/2 y (b - a) and x sqrt(c^2 - 1/4 (b - a)^2)<=b sqrt(c^2 - 1/4 (b - a)^2) + y ((b - a)/2 + a - b) (assuming base lengths a, b and side length c)
vertex count | 4 edge count | 4
height | sqrt(c^2 - 1/4 (a - b)^2) = sqrt(c^2 - 0.25 (a - b)^2) median | (a + b)/2 = 0.5 (a + b) diagonal length | sqrt(a b + c^2) area | 1/2 (a + b) sqrt(c^2 - 1/4 (a - b)^2) = 0.5 (a + b) sqrt(c^2 - 0.25 (a - b)^2) perimeter | a + b + 2 c interior angles | (cos^(-1)((b - a)/(2 c)) rad | cos^(-1)((b - a)/(2 c)) rad | (π - cos^(-1)((b - a)/(2 c))) rad | (π - cos^(-1)((b - a)/(2 c))) rad)≈(cos^(-1)((0.5 (b - a))/c) rad | cos^(-1)((0.5 (b - a))/c) rad | (3.14159 - cos^(-1)((0.5 (b - a))/c)) rad | (3.14159 - cos^(-1)((0.5 (b - a))/c)) rad) interior angle sum | 360° = 2 π rad≈6.283 rad (assuming base lengths a, b and side length c)
square graph