The map-Airy distribution is a statistical distribution having probability density function and distribution function P(x) | = | 2e^(-2 x^3/3)[x Ai(x^2) - Ai'(x^2)] D(x) | = | 1/3 - 2x^5 (_2 F_2(7/6, 5/3 ;7/3, 8/3 ; - 4/3 x^3))/(15·3^(2/3) Γ(5/3)) - x^4 (_2 F_2(5/6, 4/3 ;5/3, 7/3 ; - 4/3 x^3))/(6·3^(1/3) Γ(4/3)) + x^2 (_2 F_2(1/6, 2/3 ;1/3, 5/3 ; - 4/3 x^3))/(3^(2/3) Γ(2/3)) + 2x(_2 F_2(-1/6, 1/3 ; - 1/3, 4/3 ; - 4/3 x^3))/(3^(1/3) Γ(1/3)), where Ai(x) is the Airy function and Ai'(x) is its derivative.