The number of nonassociative n-products with k elements preceding the rightmost left parameter is F(n, k) | = | F(n - 1, k) + F(n - 1, k - 1) | = | (n + k - 2 k) - (n + k - 1 k - 1), where (n k) is a binomial coefficient. The number of n-products in a nonassociative algebra is F(n) = C_n = sum_(j = 0)^(n - 2) F(n, j) = ((2n - 2)!)/(n!(n - 1)!), where C_n is a Catalan number, 1, 1, 2, 5, 14, 42, 132, ... (OEIS A000108).