x(u, v) = a cos(u) sin(v) y(u, v) = a sin(u) sin(v) z(u, v) = a cos(v)
x^2 + y^2 + z^2 = a^2
s^_ = (4 a)/3
(where lengths and areas refer to line segments and triangles picked at random from points on the surface)
2
g = 0
S = 4 π a^2
ds^2 = a^2 sin^2(v) du^2 + a^2 dv^2
dA = a^2 sin(v) du dv
x^_ = (0, 0, 0)
V = (4 π a^3)/3
I = ((2 a^2)/5 | 0 | 0 0 | (2 a^2)/5 | 0 0 | 0 | (2 a^2)/5)
K(u, v) = 1/a^2
(for a sphere with center at the origin and radius a)
g_(uu) = a^2 sin^2(v) g_(vv) = a^2
Γ | u | | | uv = cot(v) Γ | u | | | vu = cot(v) Γ | v | | | uu = sin(v) (-cos(v))
E(u, v) = a^2 sin^2(v) F(u, v) = 0 G(u, v) = a^2
e(u, v) = a sin^2(v) f(u, v) = 0 g(u, v) = a
left double bracketing bar x(u, v) right double bracketing bar = a
N^^(u, v) = (cos(u) sin(v), sin(u) sin(v), cos(v))
N^^(x, y, z) = (x/sqrt(x^2 + y^2 + z^2), y/sqrt(x^2 + y^2 + z^2), z/sqrt(x^2 + y^2 + z^2))
algebraic surfaces | closed surfaces | constant (Gaussian) curvature surfaces | quadratic surfaces | surfaces of revolution