x(u, v) = a sech(u) cos(v) y(u, v) = a sech(u) sin(v) z(u, v) = a (u - tanh(u))
z^2 = (a sech^(-1)(sqrt(x^2 + y^2)/a) - sqrt(a^2 - x^2 - y^2))^2
S = 4 π a^2
ds^2 = a^2 tanh^2(u) du^2 + a^2 sech^2(u) dv^2
dA = a^2 tanh(u) sech(u) du dv
x^_ = (0, 0, 0)
V = (2 π a^3)/3
K(u, v) = -1/a^2
g_(uu) = a^2 tanh^2(u) g_(vv) = a^2 sech^2(u)
Γ | u | | | uu = csch(u) sech(u) Γ | u | | | vv = csch(u) sech(u) Γ | v | | | uv = -tanh(u) Γ | v | | | vu = -tanh(u)
E(u, v) = a^2 tanh^2(u) F(u, v) = 0 G(u, v) = a^2 sech^2(u)
e(u, v) = a tanh(u) (-sech(u)) f(u, v) = 0 g(u, v) = a tanh(u) sech(u)
left double bracketing bar x(u, v) right double bracketing bar = a sqrt(u^2 - 2 u tanh(u) + 1)
N^^(u, v) = (abs(tanh(u)) cos(v), abs(tanh(u)) sin(v), sech(u) sgn(tanh(u)))
constant (Gaussian) curvature surfaces | surfaces of revolution