A function that can be defined as a Dirichlet series, i.e., is computed as an infinite sum of powers, F(n) = sum_(k = 1)^∞ [f(k)]^n, where f(k) can be interpreted as the set of zeros of some function. The most commonly encountered zeta function is the Riemann zeta function, ζ(n) congruent sum_(k = 1)^∞ 1/k^n.
Airy zeta function | Dedekind function | Dirichlet beta function | Dirichlet eta function | Dirichlet lambda function | Dirichlet L-series | Dirichlet series | Epstein zeta function | Jacobi zeta function | nint zeta function | periodic zeta function | prime zeta function | Riemann zeta function | Selberg zeta function | zeta-regularized product