Area of a Triangle

'

Math Reading Science Test Prep

GET TUTORING NEAR ME!

By providing your phone number, you consent to receive text messages from Club Z! for purposes related to our services. Message frequency may vary. Message and Data Rates may apply. Reply HELP for help or STOP to unsubscribe. See our Privacy Policy and our Terms and Conditions page

    Home / Get Math Help / Area of a Triangle

    Area of a Triangle

    Result

    A = 1/4 sqrt((a + b - c) (a - b + c) (-a + b + c) (a + b + c))

    Definition

    Definition

    Defining inequalities

    =0 and y (a^2 + c^2) + x sqrt((a + b - c) (a - b + c) (-a + b + c) (a + b + c))=y (b^2 + c^2)" style="margin-top: 7px;" />

    Lamina properties

    (c, 0) | ((-a^2 + b^2 + c^2)/(2 c), sqrt((a + b - c) (a - b + c) (-a + b + c) (a + b + c))/(2 c)) | (0, 0)

    3

    0 and b>0 and c>0 and a + b>c and b + c>a and a + c>b" style="margin-top: 7px;" />

    (data not available)

    sqrt((a + b - c) (a - b + c) (-a + b + c) (a + b + c))/(2 c)

    x^_ = ((-a^2 + b^2 + 3 c^2)/(6 c), sqrt((a + b - c) (a - b + c) (-a + b + c) (a + b + c))/(6 c))

    Mechanical properties

    J_x invisible comma x = (-(a - b - c) (a + b - c) (a - b + c) (a + b + c))^(3/2)/(96 c^2)

    J_y invisible comma y = (sqrt(-(a - b - c) (a + b - c) (a - b + c) (a + b + c)) (4 c^2 (b^2 - a^2) + (a^2 - b^2)^2 + 7 c^4))/(96 c^2)

    J_zz = -1/48 sqrt(-(a - b - c) (a + b - c) (a - b + c) (a + b + c)) (a^2 - 3 (b^2 + c^2))

    J_x invisible comma y = -((a - b - c) (a + b - c) (a - b + c) (a + b + c) (a^2 - b^2 - 2 c^2))/(96 c^2)

    r_x = ((a + b - c) (a - b + c) (-a + b + c) (a + b + c))^(1/4)/(sqrt(6) c)
r_y = sqrt(4 c^2 (b^2 - a^2) + (a^2 - b^2)^2 + 7 c^4)/(sqrt(6) c ((a + b - c) (a - b + c) (-a + b + c) (a + b + c))^(1/4))

    Distance properties

    a | b | c

    p = a + b + c

    r = 1/2 sqrt(-((a - b - c) (a + b - c) (a - b + c))/(a + b + c))

    R = (a b c)/sqrt((a + b - c) (a - b + c) (-a + b + c) (a + b + c))

    max(a, b, c)

    ? = 1

    s^_ = 2/15 (a + b + c) (1/2 (a + b + c) - a) (1/2 (a + b + c) - b) (1/2 (a + b + c) - c) (log((a + b + c)/(2 (1/2 (a + b + c) - a)))/a^3 + log((a + b + c)/(2 (1/2 (a + b + c) - b)))/b^3 + log((a + b + c)/(2 (1/2 (a + b + c) - c)))/c^3) + ((b - c)^2 (b + c))/(30 a^2) + ((c - a)^2 (a + c))/(30 b^2) + ((a + b) (a - b)^2)/(30 c^2) + 1/15 (a + b + c)

    A^_ = 1/48 sqrt((a + b - c) (a - b + c) (-a + b + c) (a + b + c))

    Alternate form

    1/4 sqrt((-a - b - c) (a - b - c) (a + b - c) (a - b + c))

    Alternate forms assuming a, b, and c are positive

    1/4 sqrt(a + b - c) sqrt(a - b + c) sqrt(-a + b + c) sqrt(a + b + c) (-1)^(?-(arg(a + b - c) + arg(a - b + c) + arg(-a + b + c) - ?)/(2 ?)?)

    1/4 sqrt(a + b - c) sqrt(a - b + c) sqrt(-a + b + c) sqrt(a + b + c) exp(i ? floor(-arg(a + b - c)/(2 ?) - arg(a - b + c)/(2 ?) - arg(-a + b + c)/(2 ?) + 1/2))