C_8
vertex count | 8 edge count | 8 connected component count | 1
antipodal | apex | arc-transitive | bicolorable | biconnected | bipartite | bridgeless | cactus | Cayley graphs | chordless | chromatically unique | circulant | class 1 | claw-free | connected | cycle | cyclic | determined by resistance | determined by spectrum | distance-regular | distance-transitive | edge-transitive | Eulerian | graceful | Haar | Hadamard | Hamilton-decomposable | Hamiltonian | Harary | honeycomb toroidal | Knödel | LCF | line graphs | local | matchstick | nonempty | outerplanar | perfect | perfect matching | planar | projective planar | pseudoforest | pseudotree | regular | Sierpiński carpet | simple | square-free | stacked prism | symmetric | traceable | triangle-free | two-regular | unicyclic | uniquely colorable | unit-distance | vertex-transitive | weakly perfect | weakly regular | wreath
8-circulant graph (1, 2, 4)
8-cycle graph
vertex degrees | 2 (8 vertices)
radius | 4 diameter | 4 girth | 8 vertex connectivity | 2 edge connectivity | 2
(x - 2) x^2 (x + 2) (x^2 - 2)^2
x^7 y + 8 x^7 + 28 x^6 + 56 x^5 + 70 x^4 + 56 x^3 + 28 x^2 + 8 x + 1
x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + y
chromatic number | 2 edge chromatic number | 2
(-2)^1 (-sqrt(2))^2 0^2 sqrt(2)^2 2^1
(0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0)
(1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1)
Hosoya index | 47 Kirchhoff index | 42 stability index | 45 Wiener index | 64