(6, 1)-tadpole Graph
vertex count | 7 edge count | 7 connected component count | 1
almost Hamiltonian | apex | asymmetric | bicolorable | bipartite | bridged | cactus | chordless | chromatically unique | class 1 | connected | cyclic | determined by resistance | determined by spectrum | dominating unique | flexible | graceful | linklessly embeddable | map | matchstick | Meyniel | multigraphic | noncayley | nonempty | noneulerian | nongeometric | nonhamiltonian | no perfect matching | outerplanar | pan | perfect | planar | projective planar | pseudoforest | pseudotree | quadratically embeddable | simple | square-free | switchable | tadpole | traceable | triangle-free | unicyclic | uniquely colorable | uniquely embeddable | unit-distance | weakly perfect
7-graph 1019
8-matchstick graph 92
vertex degrees | 1 (1 vertex) | 2 (5 vertices) | 3 (1 vertex)
radius | 3 diameter | 4 girth | 6 vertex connectivity | 1 edge connectivity | 1
(x - 1) x (x + 1) (x^4 - 6 x^2 + 7)
(x + 1) (x^5 y + 6 x^5 + 15 x^4 + 20 x^3 + 15 x^2 + 6 x + 1)
x (x^5 + x^4 + x^3 + x^2 + x + y)
chromatic number | 2 edge chromatic number | 3
(-sqrt(3 + sqrt(2)))^1 (-sqrt(3 - sqrt(2)))^1 (-1)^1 0^1 1^1 sqrt(3 - sqrt(2))^1 sqrt(3 + sqrt(2))^1
(0 | 1 | 0 | 0 | 0 | 1 | 0 1 | 0 | 1 | 0 | 0 | 0 | 0 0 | 1 | 0 | 1 | 0 | 0 | 0 0 | 0 | 1 | 0 | 1 | 0 | 0 0 | 0 | 0 | 1 | 0 | 1 | 0 1 | 0 | 0 | 0 | 1 | 0 | 1 0 | 0 | 0 | 0 | 0 | 1 | 0)
(1 | 1 | 0 | 0 | 0 | 0 | 0 1 | 0 | 1 | 0 | 0 | 0 | 0 0 | 0 | 1 | 1 | 0 | 0 | 0 0 | 0 | 0 | 1 | 1 | 0 | 0 0 | 0 | 0 | 0 | 1 | 1 | 0 0 | 1 | 0 | 0 | 0 | 1 | 1 0 | 0 | 0 | 0 | 0 | 0 | 1)
Hosoya index | 26 Kirchhoff index | 29.33 stability index | 0 Wiener index | 42