3-path Complement Graph
P_2 union K_1
vertex count | 3 edge count | 1 connected component count | 2
acyclic | almost controllable | apex | asymmetric | bicolorable | bipartite | block | bridged | chordal | chordless | chromatically unique | class 1 | claw-free | determined by resistance | determined by spectrum | disconnected | dominating unique | edge-transitive | flexible | forest | integral | line graphs | linklessly embeddable | map | matchstick | Meyniel | noncayley | nonempty | noneulerian | nongeometric | nonhamiltonian | no perfect matching | outerplanar | path complement | perfect | planar | projective planar | pseudoforest | Ptolemaic | simple | split | square-free | strongly perfect | triangle-free | triangular honeycomb rook | ungraceful | unigraphic | uniquely embeddable | unit-distance | unswitchable | untraceable | weakly perfect | well covered
3-path graph
singleton graph
vertex degrees | 0 (1 vertex) | 1 (2 vertices)
radius | ∞ diameter | ∞ girth | ∞ vertex connectivity | 0 edge connectivity | 0
(x - 1) x (x + 1)
x + 1
x
chromatic number | 2 edge chromatic number | 1
(-1)^1 0^1 1^1
(0 | 0 | 1 0 | 0 | 0 1 | 0 | 0)
(1 0 1)
Hosoya index | 2 Kirchhoff index | ∞ stability index | 0 Wiener index | ∞