5-wheel Complement Graph
2P_2 union K_1
vertex count | 5 edge count | 2 connected component count | 3
acyclic | apex | asymmetric | bicolorable | bipartite | block | bridged | chordal | chordless | chromatically nonunique | class 1 | claw-free | determined by resistance | determined by spectrum | disconnected | dominating nonunique | edge-transitive | flexible | forest | integral | line graphs | linklessly embeddable | map | matchstick | Meyniel | noncayley | nonempty | noneulerian | nongeometric | nonhamiltonian | no perfect matching | outerplanar | perfect | planar | projective planar | pseudoforest | Ptolemaic | simple | square-free | strongly perfect | switchable | triangle-free | ungraceful | unigraphic | uniquely embeddable | unit-distance | untraceable | weakly perfect | well covered | wheel complement
5-wheel graph
2-empty graph
vertex degrees | 0 (1 vertex) | 1 (4 vertices)
radius | ∞ diameter | ∞ girth | ∞ vertex connectivity | 0 edge connectivity | 0
(x - 1)^2 x (x + 1)^2
(x + 1)^2
x^2
chromatic number | 2 edge chromatic number | 1
(-1)^2 0^1 1^2
(0 | 0 | 0 | 1 | 0 0 | 0 | 0 | 0 | 1 0 | 0 | 0 | 0 | 0 1 | 0 | 0 | 0 | 0 0 | 1 | 0 | 0 | 0)
(1 | 0 0 | 1 0 | 0 1 | 0 0 | 1)
Hosoya index | 4 Kirchhoff index | ∞ stability index | 0 Wiener index | ∞