6-graph 126
vertex count | 6 edge count | 9 connected component count | 1
apex | asymmetric | Beineke | biconnected | bridgeless | chordal | chromatically nonunique | class 1 | claw-free | connected | cyclic | determined by resistance | determined by spectrum | dominating nonunique | graceful | Hamiltonian | k-tree | Laman | linklessly embeddable | map | matchstick | Meyniel | multigraphic | noncayley | nonempty | noneulerian | nongeometric | not uniquely embeddable | outerplanar | pancyclic | perfect | perfect matching | planar | polyiamond | projective planar | quadratically embeddable | rigid | simple | switchable | traceable | uniquely colorable | uniquely Hamiltonian | unit-distance | weakly perfect | well covered
A graph
(not a named graph)
vertex degrees | 2 (2 vertices) | 3 (2 vertices) | 4 (2 vertices)
radius | 2 diameter | 3 girth | 3 vertex connectivity | 2 edge connectivity | 2
(x^3 - x^2 - 6 x - 3) (x^3 + x^2 - 2 x - 1)
x^5 y^4 + 9 x^5 y^3 + 34 x^5 y^2 + 65 x^5 y + 55 x^5 + 2 x^4 y^3 + 19 x^4 y^2 + 68 x^4 y + 99 x^4 + 3 x^3 y^2 + 27 x^3 y + 80 x^3 + 4 x^2 y + 36 x^2 + 9 x + 1
x^5 + 4 x^4 + 4 x^3 y + 6 x^3 + 3 x^2 y^2 + 9 x^2 y + 4 x^2 + 2 x y^3 + 7 x y^2 + 6 x y + x + y^4 + 3 y^3 + 3 y^2 + y
chromatic number | 3 edge chromatic number | 4
(root of -1 - 2 x + x^2 + x^3 near x = -1.80194)^1 (root of -3 - 6 x - x^2 + x^3 near x = -1.58836)^1 (root of -3 - 6 x - x^2 + x^3 near x = -0.593579)^1 (root of -1 - 2 x + x^2 + x^3 near x = -0.445042)^1 (root of -1 - 2 x + x^2 + x^3 near x = 1.24698)^1 (root of -3 - 6 x - x^2 + x^3 near x = 3.18194)^1
(0 | 0 | 1 | 0 | 1 | 1 0 | 0 | 0 | 1 | 1 | 1 1 | 0 | 0 | 0 | 1 | 0 0 | 1 | 0 | 0 | 0 | 1 1 | 1 | 1 | 0 | 0 | 1 1 | 1 | 0 | 1 | 1 | 0)
(1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1)
Hosoya index | 29 Kirchhoff index | 11.11 stability index | 23 Wiener index | 22