8-circulant Graph (1, 4)
M_3
vertex count | 8 edge count | 12 connected component count | 1
Andrásfai | apex | asymmetric | biconnected | biplanar | bridgeless | Cayley graphs | chromatically unique | circulant | class 1 | connected | critical nonplanar | cubic | cyclic | determined by resistance | determined by spectrum | dominating unique | flexible | fully reconstructible in C^1 | graceful | Hamilton-connected | Hamilton-decomposable | Hamiltonian | Harary | H-star connected | imperfect | LCF | linklessly embeddable | local | Möbius ladder | multigraphic | nonempty | noneulerian | nongeometric | nonplanar | not uniquely embeddable | perfect matching | projective planar | regular | simple | singlecross | switchable | toroidal | traceable | triangle-free | unit-distance forbidden | vertex-transitive | weakly regular | well covered
4-antiprism graph
(not a named graph)
vertex degrees | 3 (8 vertices)
radius | 2 diameter | 2 girth | 4 vertex connectivity | 3 edge connectivity | 3
(x - 3) (x - 1)^2 (x + 1) (x^2 + 2 x - 1)^2
x^7 y^5 + 12 x^7 y^4 + 66 x^7 y^3 + 212 x^7 y^2 + 409 x^7 y + 392 x^7 + 8 x^6 y^3 + 86 x^6 y^2 + 388 x^6 y + 752 x^6 + 12 x^5 y^2 + 172 x^5 y + 752 x^5 + 40 x^4 y + 491 x^4 + 4 x^3 y + 220 x^3 + 66 x^2 + 12 x + 1
x^7 + 5 x^6 + 15 x^5 + 4 x^4 y + 31 x^4 + 24 x^3 y + 42 x^3 + 12 x^2 y^2 + 52 x^2 y + 34 x^2 + 8 x y^3 + 38 x y^2 + 48 x y + 12 x + y^5 + 7 y^4 + 20 y^3 + 26 y^2 + 12 y
chromatic number | 3 edge chromatic number | 3
(-1 - sqrt(2))^2 (-1)^1 (-1 + sqrt(2))^2 1^2 3^1
(0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0)
(1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1)
Hosoya index | 106 Kirchhoff index | 19.14 stability index | 70 Wiener index | 44