8-graph 8310
vertex count | 8 edge count | 15 connected component count | 1
apex | asymmetric | biconnected | bridgeless | chromatically nonunique | class 1 | connected | cyclic | determined by resistance | determined by spectrum | dominating nonunique | fully reconstructible in C^1 | graceful | Hamilton-connected | Hamiltonian | H-star connected | linklessly embeddable | map | multigraphic | noncayley | nonempty | noneulerian | nongeometric | pancyclic | perfect | perfect matching | planar | Plummer-Toft | polyhedral | projective planar | quadratically embeddable | rigid | simple | switchable | traceable | uniquely embeddable | weakly perfect
(not a named graph)
(not a named graph)
vertex degrees | 3 (4 vertices) | 4 (2 vertices) | 5 (2 vertices)
radius | 2 diameter | 3 girth | 3 vertex connectivity | 3 edge connectivity | 3
x (x + 2) (x^6 - 2 x^5 - 11 x^4 + 6 x^3 + 25 x^2 + 6 x - 4)
x^7 y^8 + 15 x^7 y^7 + 105 x^7 y^6 + 450 x^7 y^5 + 1300 x^7 y^4 + 2625 x^7 y^3 + 3693 x^7 y^2 + 3408 x^7 y + 1633 x^7 + 5 x^6 y^6 + 65 x^6 y^5 + ... + 189 x^4 y^2 + 631 x^4 y + 1257 x^4 + 2 x^3 y^3 + 15 x^3 y^2 + 108 x^3 y + 447 x^3 + 8 x^2 y + 105 x^2 + 15 x + 1 (36 terms)
x^7 + 8 x^6 + 8 x^5 y + 28 x^5 + 2 x^4 y^3 + 9 x^4 y^2 + 44 x^4 y + 57 x^4 + x^3 y^5 + 4 x^3 y^4 + 14 x^3 y^3 + 53 x^3 y^2 + 110 x^3 y + 72 x^3 + ... + 26 x y^5 + 72 x y^4 + 132 x y^3 + 153 x y^2 + 90 x y + 16 x + y^8 + 7 y^7 + 23 y^6 + 49 y^5 + 75 y^4 + 81 y^3 + 54 y^2 + 16 y (35 terms)
chromatic number | 4 edge chromatic number | 5
(root of -4 + 6 x + 25 x^2 + 6 x^3 - 11 x^4 - 2 x^5 + x^6 near x = -2.21385)^1 (-2)^1 (root of -4 + 6 x + 25 x^2 + 6 x^3 - 11 x^4 - 2 x^5 + x^6 near x = -1.16337)^1 (root of -4 + 6 x + 25 x^2 + 6 x^3 - 11 x^4 - 2 x^5 + x^6 near x = -0.723639)^1 0^1 (root of -4 + 6 x + 25 x^2 + 6 x^3 - 11 x^4 - 2 x^5 + x^6 near x = 0.294406)^1 (root of -4 + 6 x + 25 x^2 + 6 x^3 - 11 x^4 - 2 x^5 + x^6 near x = 1.83608)^1 (root of -4 + 6 x + 25 x^2 + 6 x^3 - 11 x^4 - 2 x^5 + x^6 near x = 3.97038)^1
(0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0)
(1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1)
Hosoya index | 153 Kirchhoff index | 16.63 stability index | 61 Wiener index | 42