9-graph 251410
W^__9
vertex count | 9 edge count | 20 connected component count | 2
asymmetric | biplanar | bridgeless | chromatically unique | class 1 | claw-free | cyclic | determined by resistance | determined by spectrum | disconnected | dominating nonunique | doublecross | flexible | graceful | intrinsically linked | multigraphic | noncayley | nonempty | noneulerian | nongeometric | nonhamiltonian | nonplanar | no perfect matching | not uniquely embeddable | perfect | simple | switchable | toroidal | untraceable | weakly perfect | well covered | wheel complement
9-wheel graph
(not a named graph)
vertex degrees | 0 (1 vertex) | 5 (8 vertices)
radius | ∞ diameter | ∞ girth | 3 vertex connectivity | 0 edge connectivity | 0
(x - 5) (x - 1) x (x + 1)^2 (x^2 + 2 x - 1)^2
x^7 y^13 + 20 x^7 y^12 + 190 x^7 y^11 + 1140 x^7 y^10 + 4845 x^7 y^9 + 15496 x^7 y^8 + 38640 x^7 y^7 + 76680 x^7 y^6 + 122309 x^7 y^5 + 156812 x^7 y^4 + ... + 2844 x^4 y + 4531 x^4 + 2 x^3 y^3 + 36 x^3 y^2 + 314 x^3 y + 1124 x^3 + 16 x^2 y + 190 x^2 + 20 x + 1 (44 terms)
x^7 + 13 x^6 + 16 x^5 y + 75 x^5 + 2 x^4 y^3 + 30 x^4 y^2 + 168 x^4 y + 239 x^4 + 16 x^3 y^4 + 100 x^3 y^3 + 360 x^3 y^2 + 664 x^3 y + 430 x^3 + ... + y^13 + 7 y^12 + 28 y^11 + 84 y^10 + 202 y^9 + 406 y^8 + 700 y^7 + 1043 y^6 + 1328 y^5 + 1393 y^4 + 1116 y^3 + 590 y^2 + 148 y (43 terms)
chromatic number | 4 edge chromatic number | 5
(-1 - sqrt(2))^2 (-1)^2 0^1 (-1 + sqrt(2))^2 1^1 5^1
(0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0)
Hosoya index | 326 Kirchhoff index | ∞ stability index | 96 Wiener index | ∞