2-path graph | 5-cycle graph | Wagner graph | 4-Andrásfai graph | 5-Andrásfai graph | 6-Andrásfai graph | 7-Andrásfai graph | 8-Andrásfai graph | 9-Andrásfai graph | 10-Andrásfai graph (total: 10)
(1, 1, 2)-grid graph | (1, 1)-bipartite (0, 2)-graph | (1, 1)-complete bipartite graph | (1, 1)-Sierpiński simplex graph | (1, 1)-stacked book graph | (1, 2)-bar graph | (1, 2)-Hamming graph | (1, 2)-king graph | (1, 2)-Knödel graph | (1, 2)-lattice graph | ...
(2, 5)-Harary graph | 2-Andrásfai graph | 3-Mycielski graph | (5, 1)-stacked prism graph | (5, 1)-wreath graph | 5-arc transitive graph 1 | 5-circulant graph (1) | 5-circulant graph (2) | 5-cycle complement graph | 5-edge-transitive graph 9 | ...
(3, 8)-Harary graph | 3-Andrásfai graph | 4-Möbius ladder graph | 4-Möbius wheel | (8, 12, 3)-unit distance forbidden graph | 8-circulant graph (1, 4) | 8-circulant graph (3, 4) | 8-cubic graph 5 | 8-graph 9944 | 8-vertex transitive graph 5 | cubic transitive graph 4
11-circulant graph (1, 3) | 11-circulant graph (1, 4) | 11-circulant graph (2, 3) | 11-circulant graph (2, 5) | 11-circulant graph (4, 5) | 11-quartic graph 265 | 11-vertex transitive graph 3
14-circulant graph (1, 4, 7) | 14-circulant graph (2, 3, 7) | 14-circulant graph (5, 6, 7) | 14-vertex transitive graph 14
17-circulant graph (1, 3, 5) | 17-circulant graph (1, 4, 6) | 17-circulant graph (1, 4, 7) | 17-circulant graph (2, 3, 8) | 17-circulant graph (2, 5, 8) | 17-circulant graph (2, 6, 7) | 17-circulant graph (3, 4, 5) | 17-circulant graph (6, 7, 8) | 17-vertex transitive graph 7
20-circulant graph (1, 3, 8, 10) | 20-circulant graph (1, 4, 7, 10) | 20-circulant graph (3, 4, 9, 10) | 20-circulant graph (7, 8, 9, 10) | 20-vertex transitive graph 178
23-circulant graph (1, 3, 5, 7) | 23-circulant graph (1, 4, 6, 9) | 23-circulant graph (1, 4, 7, 10) | 23-circulant graph (1, 6, 8, 10) | 23-circulant graph (2, 3, 7, 11) | 23-circulant graph (2, 3, 8, 9) | 23-circulant graph (2, 5, 8, 11) | 23-circulant graph (2, 6, 9, 10) | 23-circulant graph (3, 4, 5, 11) | 23-circulant graph (4, 5, 6, 7) | ...
26-circulant graph (1, 4, 7, 10, 13) | 26-circulant graph (1, 6, 8, 11, 13) | 26-circulant graph (2, 3, 7, 8, 13) | 26-circulant graph (2, 5, 6, 9, 13) | 26-circulant graph (3, 4, 5, 12, 13) | 26-circulant graph (9, 10, 11, 12, 13) | 26-vertex transitive graph 448
29-circulant graph (10, 11, 12, 13, 14) | 29-circulant graph (1, 3, 5, 7, 9) | 29-circulant graph (1, 3, 8, 10, 12) | 29-circulant graph (1, 4, 6, 11, 13) | 29-circulant graph (1, 4, 7, 10, 13) | 29-circulant graph (1, 4, 7, 9, 12) | 29-circulant graph (2, 3, 7, 8, 12) | 29-circulant graph (2, 3, 8, 9, 14) | 29-circulant graph (2, 5, 6, 9, 13) | 29-circulant graph (2, 5, 8, 11, 14) | ...
| vertex count | edge count | connected component count 2-path graph | 2 | 1 | 1 5-cycle graph | 5 | 5 | 1 Wagner graph | 8 | 12 | 1 4-Andrásfai graph | 11 | 22 | 1 5-Andrásfai graph | 14 | 35 | 1 6-Andrásfai graph | 17 | 51 | 1 7-Andrásfai graph | 20 | 70 | 1 8-Andrásfai graph | 23 | 92 | 1 9-Andrásfai graph | 26 | 117 | 1 10-Andrásfai graph | 29 | 145 | 1
Andrásfai | Cayley graphs | circulant | connected | local | nonempty | regular | simple | traceable | triangle-free | vertex-transitive | well covered
| complement graph name 2-path graph | 2-empty graph 5-cycle graph | 5-cycle graph Wagner graph | 4-antiprism graph 4-Andrásfai graph | 11-circulant graph (1, 2, 3) 5-Andrásfai graph | 14-circulant graph (1, 2, 3, 4)
| line graph name 2-path graph | singleton graph 5-cycle graph | 5-cycle graph Wagner graph | (not a named graph) 4-Andrásfai graph | (not a named graph) 5-Andrásfai graph | (not a named graph)