GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Home / Get Math Help

    Bessel Function

    Result

    0.710146...

    Number line

    Number name

    zero point seven one zero one four six one two eight five two zero four six one nine

    Alternative representation

    J_0(1.12) = I_0(1.12 i)

    J_0(1.12) = I_0(-1.12 i)

    J_0(1.12) = 0F1(1, -1.12^2/4)

    Series representation

    J_0(1.12) = sum_(k=0)^∞ ((-1)^k e^(-1.15964 k))/(k! Γ(1 + k))

    J_0(1.12) = i^abs(0) sum_(k=0)^∞ ((-1)^k 0.56^(2 k + abs(0)))/(k! Γ(1 + k + abs(0)))

    J_0(1.12) = (1 sum_(k=0)^∞ ((-1/4)^k 1.12^(2 k))/(k! (1)_k))/Γ(1)

    Integral representation

    J_0(1.12) = 2/π integral_0^∞ sin(1.12 cosh(t)) dt

    J_0(1.12) = 1/π integral_0^π cos(-1.12 sin(t)) dt

    J_0(1.12) = 1/(2 π) integral_(-π)^π e^(1.12 i cos(t)) dt

    Back to List | POWERED BY THE WOLFRAM LANGUAGE