Home / Get Math Help
Bessel Function
Result
0.710146...
Number line
Number name
zero point seven one zero one four six one two eight five two zero four six one nine
Alternative representation
J_0(1.12) = I_0(1.12 i)
J_0(1.12) = I_0(-1.12 i)
J_0(1.12) = 0F1(1, -1.12^2/4)
Series representation
J_0(1.12) = sum_(k=0)^∞ ((-1)^k e^(-1.15964 k))/(k! Γ(1 + k))
J_0(1.12) = i^abs(0) sum_(k=0)^∞ ((-1)^k 0.56^(2 k + abs(0)))/(k! Γ(1 + k + abs(0)))
J_0(1.12) = (1 sum_(k=0)^∞ ((-1/4)^k e^(0.226657 k))/(k! (1)_k))/Γ(1)
Integral representation
J_0(1.12) = 2/π integral_0^∞ sin(1.12 cosh(t)) dt
J_0(1.12) = 1/π integral_0^π cos(-1.12 sin(t)) dt
J_0(1.12) = 1/(2 π) integral_(-π)^π e^(1.12 i cos(t)) dt