GET TUTORING NEAR ME!

By providing your phone number, you consent to receive text messages from Club Z! for purposes related to our services. Message frequency may vary. Message and Data Rates may apply. Reply HELP for help or STOP to unsubscribe. See our Privacy Policy and our Terms and Conditions page

    Home / Get Math Help

    Hénon Map

    Henon map

    (x_n+1 y_n+1) = (-a x_n^2 + y_n + 1 b x_n) (n = (0, 1, 2, ...))

    Input values

    initial condition x_0 | 0.6 initial condition y_0 | 0.2 parameter a | 1.4 parameter b | 0.3

    Iterates

    n | 0 | 1 | 2 | 3 | 4 (x_n y_n) | (0.60000 0.20000) | (0.69600 0.18000) | (0.50182 0.20880) | (0.85625 0.15055) | (0.12411 0.25688)

    Attractor

    correlation dimension | 1.25

    Limiting behavior

    chaotic

    Bifurcation diagrams

    Lyapunov exponent

    λ≈0.418

    Plot of the Lyapunov exponent vs. a, b

    (b fixed at 0.3)

    (a fixed at 1.4)

    Inverse

    (x_n y_n) = (y_n+1/b (a y_n+1^2)/b^2 + x_n+1 - 1)≈(3.33333 y_n+1 15.5556 y_n+1^2 + x_n+1 - 1)

    Alternative representation

    x_n+1 = -a x_n^2 + b x_n-1 + 1 = -1.4 x_n^2 + 0.3 x_n-1 + 1

    Fixed points

    position | ((b - sqrt((b - 1)^2 + 4 a) - 1)/(2 a) (b (b - sqrt((b - 1)^2 + 4 a) - 1))/(2 a))≈(-1.13135 -0.339406)

    position | ((b + sqrt((b - 1)^2 + 4 a) - 1)/(2 a) (b (b + sqrt((b - 1)^2 + 4 a) - 1))/(2 a))≈(0.631354 0.189406)