GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use, Privacy Policy and Consent Disclaimer

    Home / Get Math Help

    Laplace Transform

    Result

    (24 (5 s^4 - 10 s^2 + 1))/(s^2 + 1)^5

    Plot

    Alternate form

    (24 (5 (s^2 - 2) s^2 + 1))/(s^2 + 1)^5

    ((120 s^2 - 240) s^2 + 24)/(((((s^2 + 5) s^2 + 10) s^2 + 10) s^2 + 5) s^2 + 1)

    Expanded form

    -(240 s^2)/(s^2 + 1)^5 + 24/(s^2 + 1)^5 + (120 s^4)/(s^2 + 1)^5

    (120 s^4 - 240 s^2 + 24)/(s^10 + 5 s^8 + 10 s^6 + 10 s^4 + 5 s^2 + 1)

    (120 s^4)/(s^10 + 5 s^8 + 10 s^6 + 10 s^4 + 5 s^2 + 1) - (240 s^2)/(s^10 + 5 s^8 + 10 s^6 + 10 s^4 + 5 s^2 + 1) + 24/(s^10 + 5 s^8 + 10 s^6 + 10 s^4 + 5 s^2 + 1)

    Partial fraction expansion

    120/(s^2 + 1)^3 - 480/(s^2 + 1)^4 + 384/(s^2 + 1)^5

    Roots

    s = -sqrt(1 - 2/sqrt(5))

    s = sqrt(1 - 2/sqrt(5))

    s = -sqrt(1 + 2/sqrt(5))

    s = sqrt(1 + 2/sqrt(5))

    Property as a function

    even

    Series expansion at s = 0

    24 - 360 s^2 + 1680 s^4 + O(s^6) (Taylor series)

    Series expansion at s = ∞

    120/s^6 - 840/s^8 + 3024/s^10 - 7920/s^12 + O((1/s)^13) (Laurent series)

    Derivative

    d/ds((24 (5 s^4 - 10 s^2 + 1))/(s^2 + 1)^5) = -(240 s (3 s^4 - 10 s^2 + 3))/(s^2 + 1)^6

    Indefinite integral

    integral(24 (1 - 10 s^2 + 5 s^4))/(1 + s^2)^5 ds = (24 (s - s^3))/(s^2 + 1)^4 + constant

    Global minima

    min{(24 (1 - 10 s^2 + 5 s^4))/(1 + s^2)^5} = -81/8 at s = 1/sqrt(3)

    min{(24 (1 - 10 s^2 + 5 s^4))/(1 + s^2)^5} = -81/8 at s = -1/sqrt(3)

    Global maximum

    max{(24 (1 - 10 s^2 + 5 s^4))/(1 + s^2)^5} = 24 at s = 0

    Limit

    lim_(s-> ± ∞) (24 (1 - 10 s^2 + 5 s^4))/(1 + s^2)^5 = 0

    Definite integral

    integral_0^∞ (24 (1 - 10 s^2 + 5 s^4))/(1 + s^2)^5 ds≈-2.44942954807925×10^-15...