x(u, v) = a cos(u) cosh(v/a) y(u, v) = a sin(u) cosh(v/a) z(u, v) = v
g = 0
ds^2 = a^2 cosh^2(v/a) du^2 + cosh^2(v/a) dv^2
dA = a cosh^2(v/a) du dv
x^_ = (0, 0, 0)
K(u, v) = -(sech^4(v/a))/a^2
g_(uu) = a^2 cosh^2(v/a) g_(vv) = cosh^2(v/a)
Γ | u | | | uv = tanh(v/a)/a Γ | u | | | vu = tanh(v/a)/a Γ | v | | | uu = -a tanh(v/a) Γ | v | | | vv = tanh(v/a)/a
E(u, v) = a^2 cosh^2(v/a) F(u, v) = 0 G(u, v) = cosh^2(v/a)
e(u, v) = -a f(u, v) = 0 g(u, v) = 1/a
left double bracketing bar x(u, v) right double bracketing bar = sqrt(a^2 cosh((2 v)/a) + a^2 + 2 v^2)/sqrt(2)
N^^(u, v) = (-cos(u) sech(v/a), -sech(v/a) sin(u), tanh(v/a))
minimal surfaces | surfaces of revolution