-sin(2 x)/(cos(2 x) - 1)
cos(x)/sin(x)
-(i (e^(-i x) + e^(i x)))/(e^(-i x) - e^(i x))
x = 1/2 (2 π n + π), n element Z
{x element R : x/π not element Z}
R (all real numbers)
periodic in x with period π
surjective onto R
odd
1/x - x/3 - x^3/45 - (2 x^5)/945 + O(x^6) (Laurent series)
d/dx(cot(x)) = -csc^2(x)
integral cot(x) dx = log(sin(x)) + constant (assuming a complex-valued logarithm)
cot(x) = cot(m π + x) for m element Z
cot(x) = cot(2 x) + csc(2 x)
cot(x) = (1 + cos(2 x)) csc(2 x)
cot(x) = 1/2 (cot(x/2) - tan(x/2))
cot(x) = 1/2 (-1 + cot^2(x)) tan(2 x)
cot(x) = sin(2 x)/(1 - cos(2 x))
cot(x) = csc(x) sec(x) - tan(x)
cot(x) = 1/2 (-1 + cot^2(x/2)) tan(x/2)
cot(x) = 1/tan(x)
cot(x) = i coth(i x)
cot(x) = -i coth(-i x)
integral_0^π cot(x) dx≈750....
cot(x) = -i - 2 i sum_(k=1)^∞ q^(2 k) for q = e^(i x)
cot(x) = -i sum_(k=-∞)^∞ e^(2 i k x) sgn(k)
cot(x) = i + 2 i sum_(k=0)^∞ e^(-2 i (1 + k) x) for Im(x)<0
cot(x) = - integral_(π/2)^x csc^2(t) dt
cot(x) = 2/π integral_0^∞ (-1 + t^(1 - (2 x)/π))/(-1 + t^2) dt for 0