{(-sqrt(a^2 + b^2), 0), (sqrt(a^2 + b^2), 0)}
(-sqrt(a^2 + b^2) | 0 sqrt(a^2 + b^2) | 0)
x(t) = a sec(t) y(t) = b tan(t)
x^2/a^2 - y^2/b^2 = 1
r(θ) = (a b)/sqrt(b^2 cos^2(θ) - a^2 sin^2(θ))
(for a hyperbola with center at the origin, semimajor axis a parallel to the x-axis, and semiminor axis b parallel to the y-axis)
e = sqrt(b^2/a^2 + 1)
p = b^2/sqrt(a^2 + b^2)
y = -(b x)/a ∨ y = (b x)/a
L = b^2/a
x = -a^2/sqrt(a^2 + b^2) ∨ x = a^2/sqrt(a^2 + b^2)
λ sqrt(a^2 + b^2) + λ^2
λ_1 = -sqrt(a^2 + b^2)
λ_2 = 0
v_1 = (-1, 1)
v_2 = (0, 1)
(-sqrt(a^2 + b^2) | 0 sqrt(a^2 + b^2) | 0) = P.D.P^(-1) where P = (0 | -1 1 | 1) D = (0 | 0 0 | -sqrt(a^2 + b^2)) P^(-1) = (1 | 1 -1 | 0)